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Simple Summary: Breast cancer involves changes in the healthy cells of the breast resulting in rapid
and abnormal division of cells that later spread to other parts of the body through the process of
metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant
role in the switch from epithelial to mesenchymal transition through their contributions to cellular
motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses
were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer
and their correlation with EMT.

Abstract: Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast
cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus
contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were
observed as a consequence of EMT. Additionally, ion channels were reported in the activation of
EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast
cancer patients, differential gene expression and weighted gene co-expression network analyses were
performed using transcriptomic data. Protein–protein interactions network analysis was carried out
to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion
channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels
were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway
map was generated to represent a snapshot of deregulated cellular processes by altered ion channels
and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the
expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor
survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast
cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of
prognosis in patients with breast cancer.

Keywords: RNA-Seq; microarray; membrane proteins; bioinformatics; interaction networks; prognosis

1. Introduction

Breast cancer is a life-threatening disease and is one of the most common types of
cancer prevalent in individuals of all age groups, with the majority of cases in females. It is
also one of the most aggressive tumors with multifaceted gene expression levels at different
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stages of tumor progression. Though breast cancer starts as a local disease, mutations occur
at distinct junctures of tumor differentiation, facilitating tumor cells to metastasize [1]. The
process of metastasis starts locally by invading the host tissues surrounding the primary
tumor and into the blood or lymphatic vessels through a mechanism known as epithelial-
mesenchymal transition (EMT) [2].

Ion channels are multimeric proteins located in the plasma membrane of the cell. They
form a passageway extending from one side of the membrane to the other, thereby allowing
the flow of ions into and out of the cell based on the electrochemical gradient. This generates
a membrane potential that mediates a large number of biological functions within cells and
across cell membranes [3]. Recent evidence has shown that ion channels are involved in the
progression and pathology of various cancers [4–6]. Eag1 (KCNH1), a potassium channel,
was reported to be involved in the proliferation and cell cycle of liposarcoma cells [7].
TRPM1, a cation-permeable channel, was found to be a prognostic marker for metastasis in
melanoma [8]. TRPV6 was implicated in prostate adenocarcinoma and colorectal cancer
cell lines [8]. Additionally, studies carried out by Ko et al. reported the association of
several ion channels with various pathological features in breast cancer [3]. The activation
of EMT programs is an expository mechanism for the gain of malignant phenotypes by
epithelial cancer cells [9]. Often, this activation relies on signaling events between cancer
cells and neighboring stromal cells [10]. Specific ion channels in various aspects of EMT
induction have been reported, including the downregulation of CFTR, an ion channel
that promoted EMT, migration and invasion in breast cancer [11]. Knockdown of hERG1
(KCNH2) expression led to reversion of the EMT profile in colorectal cancer cell lines,
leading to reacquisition of the epithelial-like profile [12]. Expression of EMT transcription
factors together with overexpression of TRPV1 cation channels led to hepatocarcinogenesis.
Further inhibition of TRPV1 inhibited the growth of hepatocellular carcinoma cells [13].
The upregulation of ASIC1 and ASIC3 led to acidity-induced EMT through elevation of
intracellular Ca2+ concentration in pancreatic cancer cells. It was also shown that ASIC1 and
ASIC3 positively correlated with mesenchymal marker vimentin and inversely correlated
with epithelial marker E-cadherin in those cells [14].

The current study aims to identify altered ion channels and ion channels co-expressed
with EMT-related genes in patients with breast cancer. Several bioinformatic analysis
of ion channels and EMT-related genes led to the identification of altered ion channels
in tumor/metastatic samples along with ion channels co-expressed with EMT-related
genes in breast cancer patients. EMT scoring is a promising and versatile tool for the
systematic investigation of EMT dynamics in cancer progression [15]. EMT scores for
the expression profiles were calculated using 76-gene EMT signature based (GS76), multi-
nomial logistic regression-based (MLR) and Kolmogorov–Smirnov test-based (KS) met-
rics [16]. Protein–protein interactions (PPIs) network analysis revealed 32 ion channels that
interacted with 26 hub EMT-related genes in breast cancer. The correlation of potential
ion channels with the EMT scores was used to statistically evaluate their potential in the
EMT program. Furthermore, data mining of identified ion channels revealed the possible
repercussions of altered expression of ion channels in cellular processes. A pathway map
depicting various reactions, including the role of ion channels in serotonin signaling, insulin
signaling, calcium signaling, adipocyte metabolism, nitric oxide signaling, glutamatergic
signaling and osmotic stress, was generated. CACNA1B, ANO6, TRPV3, VDAC1 and
VDAC2 were found to be prognostically significant. These analyses could thus identify ion
channels that can be further studied to validate their potential role as molecular markers
of breast cancer. Targeting these ion channels might lead to suppression of tumor growth.
Understanding the role of these ion channels and their detailed mechanism with EMT
programs may pave the way for developing new therapeutic strategies to improve the
clinical outcomes of patients with breast cancer.

2. Material and Methods

The workflow of this study is depicted in Figure 1.
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Figure 1. Workflow for the identification of potential ion channels and its interaction with EMT-
related genes in tumor and metastatic samples of patients with breast cancer.

2.1. Data Collection

Primarily, a list of 328 ion channels was taken from the HGNC database [17] and
1184 EMT-related genes from dbEMT (version 2.0) [18]. Publicly available transcriptomic
datasets were analyzed to investigate gene expression in breast cancer. RNA sequencing
data (RNA-Seq) of breast cancer patients and normal individuals corresponding to the ion
channels and EMT-related genes were downloaded from the UCSC Xena portal, including
the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) data [19]. The
number of metastatic samples obtained in the RNA-Seq dataset was limited; thus, the in-
clusion of microarray samples was taken into consideration. Microarray datasets GSE42568
and GSE52604 were retrieved from the Gene Expression Omnibus (GEO) database. The
detailed description regarding the datasets have been mentioned in Tables S1–S3.

2.2. Data Pre-Processing and Identification of Differentially Expressed Genes

The log (read count + 1) normalized RNA-Seq data were transformed to raw reads for
input in DESeq2 [20]. The probe IDs of microarray datasets were converted to gene symbols
using the annotation files GPL570 ((HG-U133_Plus_2) Affymetrix Human Genome U133
Plus 2.0 Array) and GPL6480 (Agilent-014850 Whole Human Genome Microarray 4x44K
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G4112F) obtained from the GEO database. Gene symbols were subsequently superim-
posed with the list of ion channels and EMT-related genes. Microarray expression profiles
corresponding to those genes were set apart for the detection of differentially expressed
genes (DEGs). DEGs for ion channel and EMT gene sets were identified individually.
R Bioconductor package DESeq2 was used for RNA-Seq data, and the limma (v3.28.14)
package [21] was used for the identification of DEGs in microarray datasets. In RNA-Seq
and GSE42568 datasets, DEGs were identified for 3 subgroups—Normal vs. Tumor (HT),
Tumor vs. Metastatic (TM) and Normal vs. Metastatic (HM). GSE52604 contained only
metastatic and normal samples. The genes with an adjusted p-value (padj) ≤ 0.05 and log2
fold change (log2FC) > 0.6 were selected as upregulated and the genes with a padj ≤ 0.05
and log2FC < −0.6 were selected as downregulated genes. A non-redundant list consisting
of all DEGs for the three subgroups was prepared (Tables S4 and S5).

2.3. Construction of Co-Expression Networks of Altered Ion Channels and EMT-Related Genes

The expression profiles of the DEGs were further employed for the construction of
scale-free co-expression networks using the weighted gene co-expression network analysis
(WGCNA) R package (v4.0.0) [22,23]. Since the datasets belonged to different platforms,
they were analyzed independent of each other. First, co-expression networks for DEGs in
ion channels were constructed on the three datasets. Later, a combined gene set comprising
both ion channels and EMT-related genes was formed for co-expression network construc-
tion. The genes in each of the datasets were filtered using goodSamplesGenes function in R.
The adjacency correlation matrix was calculated based on the scale-free network model [23].
A suitable soft threshold power was selected as the soft-thresholding parameter to ensure a
scale-free network using the pickSoftThreshold function. The obtained adjacency matrix
was further used to derive the signed Topological Overlap Matrix (TOM) and the corre-
sponding dissimilarity matrix (1-TOM). Based on the dissimilarity matrix, hierarchical
clustering was performed to group genes with similar expression profiles into the same
gene modules using the DynamicTreeCut algorithm [24].

For the selection of candidate modules, expression profiles of each module were
summarized by module eigengenes (MEs) and correlated with the binary trait (normal,
tumor, metastatic) values. Thus, the module-trait relationship was obtained, and the
p-value was calculated as a confidence measure. The association of individual genes in the
module with the binary trait was quantified by the Gene Significance (GS) value. Module
membership (MM) was calculated as the correlation of gene expression profiles with the
MEs. Further, intramodular gene connectivity with the binary trait was established using
GS vs. MM plots [23]. Finally, the best correlated modules with a significant p-value were
selected from each subgroup in each dataset. Parameters adjusted at each step of WGCNA
are provided in Tables S7 and S8. The obtained networks of combined gene sets were
exported to Cytoscape with the weight threshold value set to 0.02 for visualization.

2.4. Identification of Altered Ion Channels in Tumor and Metastatic States

The modules chosen subsequent to WGCNA of ion channels were examined for the
identification of ion channels in tumor and metastatic states. The overlapping ion channels
in the selected modules of three datasets belonging to HT were shortlisted as ion channels
involved in the process of transition from normal to tumor. Similarly, overlapping ion
channels in TM were selected as ion channels in the transition between the tumor to
metastatic phenotype of breast cancer.

2.5. EMT Score Calculation

EMT scores of the transcriptomic profiles of samples from patients with breast can-
cer were calculated using previously developed methods, GS76, MLR and KS [16,25,26].
A well-defined set of gene signatures along with a classification algorithm forms the basis
for EMT score calculation in these methods. A higher GS76 score indicates a more epithelial
sample, but a higher MLR and KS score indicates a more mesenchymal sample. MLR
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quantifies the extent of EMT on a scale of [0, 2], and KS scores are defined on a scale of
[−1, +1] [16].

EMT scoring methods aid in quantifying the extent of EMT phenotype of a sample.
Different methods based on different gene signatures and algorithms have been developed
for this purpose, due to which the scores obtained from these methods may vary for the
same dataset. However, computing the scores with more than one method may capture
the extent of EMT potential in all the genes involved in EMT process, thus expanding the
search space for further analysis.

2.6. Protein–Protein Interaction Networks of Altered Ion Channels Co-Expressed with
EMT-Related Genes

Protein–protein interaction networks (PPINs) of the selected modules obtained through
WGCNA of the combined gene set were constructed using the STRING (v11.0) database [27]
to deduce the association through known and predicted interactions between the genes in
the modules. The interactions with a medium confidence and FDR of 5% were visualized in
Cytoscape (v3.8) [28] and Gephi (v0.9.2) software. To further identify ion channels interact-
ing with hub EMT-related genes, the networks were analyzed using NetworkAnalyser [29],
a Cytoscape plugin that calculates the various properties of a network, including degree
centrality, betweenness centrality and closeness centrality. The top 15 genes with the highest
degree centrality measure were selected as hub genes from each module. Thereafter, the
ion channels interacting with these genes were shortlisted.

2.7. Computation of Correlation of EMT Scores with Identified Ion Channels

The EMT scores of each sample estimated by the GS76, MLR and KS methods (men-
tioned in Section 2.5) were correlated with the expression profiles of the potential ion
channels interacting with EMT-related genes and in tumor/metastatic states of breast can-
cer. Correlating EMT scores with expression profiles of genes of interest provides statistical
evidence that supports the selection of those genes for further assessment.

2.8. Generation of Pathway Map of Altered Ion Channels and EMT-Related Genes

A data mining approach was used to annotate reactions involving identified ion
channels and EMT-related genes in various cellular processes in patients with breast
cancer. The articles were searched and screened from the PubMed database pertaining
to possible effects of alterations in ion channels and EMT-related genes in breast cancer
patients. Furthermore, various reactions, such as activation, inhibition and transportation,
were annotated [30–33]. These reactions describe the translocation of ions and small
molecules between subcellular compartments through ion channels and the role of ion
channels with EMT-related genes in several cellular processes. Thereafter, a pathway map
depicting the annotated reactions involving identified ion channels and EMT-related genes
was generated in Graphical Pathway Markup Language (GPML) format using PathVisio
(version 3.3.0) [34]—an opensource pathway drawing software. Nodes describe the entities
(proteins, genes) and edges represent the relationship between the nodes in the map.

2.9. Survival Analysis of Identified Altered Ion Channels

The R Bioconductor “RTCGA” package was utilized to obtain the clinical data for
survival analysis. Cox proportional hazard regression analysis was performed to determine
the correlation between gene expression and 5-year survival rate of patients with breast
cancer. The “survival” R Bioconductor package was used to calculate the log rank p-values
and the hazard ratios (HR) with a confidence interval of 95%. The survival differences
between high and low expressions of the putative ion channels were visualized by gener-
ating Kaplan–Meier (KM) survival plots using the R Bioconductor “survminer” package.
The group cut-off criteria were set to median value. Further, the relationship between over-
all survival (OS) and expression profiles of putative ion channels was determined by KM
OS plots using Gene Expression Profiling Interactive Analysis (GEPIA) [35]. GEPIA is a web
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server for interactive analysis of cancer and normal gene expression profiles. It analyses
the dependency of OS of patients on high and low expression of genes. The calculation
of HR was set to the Cox PH model with a confidence interval of 95%, and group cut-off
criteria were again set to the median value.

3. Results
3.1. Differentially Expressed Ion Channels and EMT-Related Genes

DESeq2 analysis of the RNA-Seq dataset with ion channels resulted in 225, 57 and
141 DEGs and the dataset with EMT-related genes resulted in 607, 336 and 601 DEGs in HT,
TM and HM, respectively. The number of ion channels found to be differentially expressed
in the microarray dataset (GSE42568) was 28 and 29 in HT and HM in analysis using the
limma package (v3.28.14). In HT and HM of GSE42568, 326 and 344 differentially expressed
EMT-related genes were obtained. Similarly, 155 ion channels and 470 EMT-related genes
were found in HM of microarray dataset (GSE52604) (Table 1). In subgroups HT, TM and
HM, 226, 57 and 220 ion channels, respectively, were obtained as non-redundant DEGs.
Likewise, 708, 336 and 811 EMT-related genes were obtained (Figure 2). Ten genes were
identified as common DEGs in both ion channel and EMT lists (Supplementary Table S6).
The common DEGs included aquaporins—AQP3, AQP5, AQP9, gap junctions—GJB1,
GJB2, potassium channels—KCNN4, KCNH1, cation channels—TRPC5, TRPM8, and other
channels—CFTR, GRIN1.

Table 1. A list of total upregulated and downregulated ion channels and EMT-related genes in HT,
TM and HM in RNA-Seq (TCGA) and microarray (GSE42568, GSE52604) datasets.

Dataset
Upregulated Downregulated

Ion Channels EMT-Related
Genes Common Genes Ion Channels EMT-Related

Genes Common Genes

TCGA
HT 145 343 6 80 264 -
TM 31 192 - 26 144 -
HM 71 311 3 70 290 -

GSE42568
HT 12 150 1 16 176 -
TM - - - - - -
HM 13 181 2 16 163 -

GSE52604
HT - - - - -
TM - - - - -
HM 35 310 2 120 160 5

3.2. Altered Ion Channels in Tumor and Metastatic States of Breast Cancer

Identification of altered ion channel modules through WGCNA analysis of the differ-
entially expressed ion channels and further selection of ion channels based on the obtained
overlaps among the datasets led to the identification of altered ion channels in tumor and
metastatic states of breast cancer.

3.2.1. Identification of Altered Ion Channel Modules by Weighted Gene Co-Expression
Network Analysis

The soft-thresholding powers chosen to ensure a scale-free network model and the
total number of modules obtained using the DynamicTreeCut algorithm of the hierarchical
clustering method are provided in Table S7. The heatmap revealed the association of each
module with normal, tumor and metastatic phenotypes along with p-values as confidence
measures. Assessment of the modules using GS vs. MM plots revealed the intramodular
gene connectivity with respect to a particular binary trait. Based on these criteria, selecting
one module, each having a better co-relation and p-value resulted in 8 modules for further
analysis (Figures 3 and S1).
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3.2.2. Overlapping Ion Channels in GSE42568, GSE52604 and TCGA Datasets

Twenty-two ion channels overlapped in the selected modules corresponding to the
three datasets in the HT subgroup (Table 2). From the 22 HT ion channels, 14 were reported
previously as significant in tumor initiation and growth in various tumor types. Among
those, four ion channels were studied in breast cancer tumor growth. Another set of 22 ion
channels were similarly identified in the TM subgroup (Table 3). Of these, 15 were reported
to be involved in metastasis in various cancers. This also included 6 ion channels that were
reported to play a role in breast cancer progression and metastasis.

Table 2. A partial list of differentially expressed ion channels in HT state in breast cancer.

Ion Channels Description Differential Expression

HTR3C 5-hydroxytryptamine receptor 3C Downregulated
CLCN6 chloride voltage-gated channel 6 Downregulated
GLRB glycine receptor beta Upregulated

SCN3A sodium voltage-gated channel alpha subunit 3 Downregulated
ANO3 anoctamin 3 Downregulated
ANO6 anoctamin 6 Downregulated

LRRC8C leucine rich repeat containing 8 VRAC subunit C Downregulated

3.3. Identification of Altered Ion Channels Interacting with EMT-Related Genes

WGCNA of DEGs obtained from the combined gene set dataset and further PPIN anal-
ysis of significantly co-expressed modules led to the identification of altered ion channels
interacting with EMT-related genes.

3.3.1. Weighted Gene Co-Expression Network Analysis for the Identification of Altered
Combined Gene Set Modules

The soft-thresholding powers chosen, the number of modules obtained and the se-
lected significant combined gene set modules are provided in Table S8 and Figure S2. On
the basis of the module-trait relationship and GS vs. MM plots, 8 modules with a better
co-relation and p-value were chosen for further analysis.
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1 
 

 

 
 Figure 3. Co-expressed ion channel modules based on the non-redundant HT DEGs. (A) Soft-

thresholding power to ensure scale-free network model: (i) A soft-thresholding power of 10 was
chosen in the microarray dataset (GSE42568) corresponding to non-redundant HT DEGs; (ii) A
soft-thresholding power of 7 was chosen in the RNA-Seq dataset corresponding to non-redundant
HT DEGs (B) Hierarchical clustering of genes into modules. Modules are assigned different colors
as depicted in the horizontal bar below the tree diagram: (i) 4 modules (yellow, blue, turquoise
and brown) were obtained in the microarray dataset (GSE42568); (ii) 4 modules (turquoise, brown,
yellow and blue) were obtained in RNA-Seq. (C) Correlation between module eigengenes and binary
traits—normal, tumor and metastatic. Rows correspond to modules depicted as different colors and
columns are the binary traits. Numbers in each cell are the correlation coefficient between module
eigengenes and the binary traits and the corresponding p-value. (i) The yellow module was chosen as
a significant module from the microarray dataset (GSE42568). (ii) The turquoise module was chosen
as a significant module from RNA-Seq. (D) Scatter plot of gene significance (GS) for the binary trait
vs. the module membership (MM) in the selected module. (i) GS-MM plot of the yellow module in
the microarray (GSE42568) dataset. (ii) GS-MM plot of the turquoise module in the RNA-Seq dataset.
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Table 3. A partial list of differentially expressed ion channels in TM state in breast cancer.

Ion Channels Description Differential Expression

TRPV3 transient receptor potential cation
channel subfamily V member 6 Downregulated

GRIK5 glutamate ionotropic receptor
kainate type subunit 5 Downregulated

CLCNKB chloride voltage-gated channel Kb Downregulated

GABRG3 gamma-aminobutyric acid type A
receptor gamma3 subunit Upregulated

KCNT1 potassium sodium-activated
channel subfamily T member 1 Downregulated

KCNN1 potassium calcium-activated
channel subfamily N member 1 Downregulated

GJA5 gap junction protein alpha 5 Upregulated

3.3.2. Network Analysis of Altered Ion Channels Co-Expressed with EMT-Related Genes

The modules obtained upon performing WGCNA for the combined gene set represent
groups of highly co-expressed genes, although a large number of ion channels were found
to be differentially expressed and co-expressed in individual analyses of the expression
profiles. Only a subset of ion channels clustered together with EMT-related genes when
co-expression analysis of the combined gene set was performed (Figure S3). The altered ion
channels clustered with EMT-related genes were the ion channels that were co-expressed
with EMT-related genes and could be involved in the EMT process. The role of TRPM7 in
EMT through associations with EGF reported by Davis et al. or the induction of EMT by
TGF-β involving CFTR reported by Zhang et al. expounds such notable contributions of
ion channels in the EMT program [36,37].

PPI networks through STRING analysis of the combined gene set selected modules
revealed the predicted interactions between the genes in the module (Figures 4 and S4).

Further, the PPINs of combined gene set analyzed using NetworkAnalyser resulted
in the identification of hub genes in the network. Hub genes in a co-expression network
are the highly interconnected nodes in a module. Out of the top 15 selected hub genes in
HT of the microarray dataset (GSE42568), ten EMT-related genes were found to interact
with ion channels. Of these, nine EMT-related genes were connected to GJA1 (Table 4).
Eight genes from HT of RNA-Seq (TCGA) were found to interact with ion channels (Table 5).
Similarly, in HM of GSE42568, eight genes were linked to ion channels and CFTR was
connected to four of them (Table 6). HM of the microarray (GSE52604) showed only five
genes that interacted with ion channels and RNA-Seq (TCGA) showed seven genes as
connected to ion channels (Tables 7 and 8). Six ion channels interacting with EMT-related
genes were common to ion channel identified in normal to tumor state of breast cancer
and two ion channels were common to the ion channels identified in tumor to metastatic
state of breast cancer. Thus, overall, 32 ion channels were found interacting with 26 hub
EMT-related genes.

Several ion channels altered in breast cancer patients were found to interact with
multiple EMT-related genes. GJA1 and GJB2 belong to the gap junction family. GJA1 was
found to interact with the hub EMT-related genes JUN, MYC, FGF2, PTEN, KDR, RHOA,
CAV1, ITGB1 and CXCL12. GJB2 was found in interactions with AKT1 and CDH1. TRPC6
and TRPC1 belong to the family of transient receptor cation channels and control the flow
of calcium ions. TRPC6 was found to be interacting with JUN and RHOA and TRPC1 was
found to be connected to RHOA and CAV1. VDAC1 is a voltage-dependent anion channel
and was linked to GAPDH, HSP90AA1 and HSPA4. KCNH2, a voltage-gated potassium
channel, was found to be linked with SRC, HSPA4 and HSP90AA1. CFTR is one of the
most widely studied ion channels, dysregulation of which has been reported in various
pathophysiological conditions [37,38]. It interacted with TP53, GAPDH, BRCA1 and
DNMT1. ANO1, a calcium-activated chloride channel, was connected to CDH1 and ERBB2.
AQP5 is an aquaporin involved in the movement of water across cell membranes [39]. It
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interacted with GAPDH and CDH1. CLIC1, a chloride channel, was found interacting with
AKT1 and GAPDH.

 

2 

 
 

Figure 4. Representation of protein–protein interaction networks (PPINs) of combined gene set.
Nodes in the shade of blue represent EMT-related genes and yellow nodes represent ion channels.
The nodes are arranged based on the degree centrality measure. Larger nodes represent nodes
with high degree centrality. (A) PPINs for microarray dataset (GSE42568) based on the list of non-
redundant HT DEGs. (B) PPINs for microarray dataset (GSE42568) based on the list of non-redundant
HM DEGs.

Table 4. A list of ion channels interacting with the top 15 EMT-related proteins with the highest
degree centrality measure in protein–protein interaction networks of modules on HT DEGs in breast
cancer GSE42568 dataset.

Dataset Degree EMT-Related
Proteins Description Interacting Ion Channels

HT-GSE42568

54 JUN Jun proto-oncogene, AP-1
transcription factor subunit TRPC6, GJA1

54 MYC MYC proto-oncogene, bHLH
transcription factor GJA1

46 KRAS KRAS proto-oncogene, GTPase GRIN1, CLCN6
44 FGF2 Fibroblast growth factor 2 GJA1
44 PTEN phosphatase and tensin homolog GJA1
43 KDR kinase insert domain receptor GJA1, SCN3A, SCN2A
40 RHOA ras homolog family member A GJA1, TRPC6, TRPC1
31 CAV1 caveolin 1 CACNA1B, GJA1, CLIC2, GJA4, TRPC1
30 ITGB1 integrin subunit beta 1 GJA1
29 CXCL12 C-X-C motif chemokine ligand 12 GJA1

3.4. Correlation of Identified Ion Channels with EMT Scores

The EMT scores obtained using GS76, MLR and KS methods for each sample in RNA-
Seq and microarray datasets are provided in Tables S9–S11. The samples with a negative
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GS76 score, a positive KS score and a higher MLR score can be interpreted as mesenchymal
samples. Subsequently, the samples with a positive GS76 score, a negative KS score and
a lower MLR score could be an epithelial sample. The correlation between the scores
relative to the specific method in each dataset was calculated and is depicted in Figure 5
and provided in Table 9. KS and MLR scores correlated positively with each other and
GS76 scores correlated negatively with both KS and MLR scores.

Table 5. A list of ion channels interacting with the top 15 EMT-related proteins with the highest
degree centrality measure in protein–protein interaction networks of modules on HT DEGs in breast
cancer TCGA dataset.

Dataset Degree EMT-Related
Proteins Description Interacting Ion Channels

HT-TCGA

74 GAPDH glyceraldehyde-3-phosphate dehydrogenase CLIC1, VDAC1, VDAC2, VDAC3
46 SRC SRC proto-oncogene, non-receptor tyrosine kinase CLCN3, GJA3, KCNH2
46 HSP90AA1 heat shock protein 90 alpha family class A member 1 KCNH2, VDAC1
42 CDKN2A cyclin dependent kinase inhibitor 2A KCNJ11
41 KRAS KRAS proto-oncogene, GTPase GRIN2D
36 DNMT1 DNA methyltransferase 1 KCNJ10
36 HSPA4 heat shock protein family A (Hsp70) member 4 KCNH2, VDAC1
30 CDC42 cell division cycle 42 CACNA2D2

Table 6. A list of ion channels interacting with top 15 EMT-related proteins with the highest degree
centrality measure in protein–protein interaction networks of modules on HM DEGs in breast cancer
GSE42568 dataset.

Dataset Degree EMT-Related
Proteins Description Interacting Ion Channels

HM-GSE42568

99 TP53 tumor protein p53 CFTR
93 AKT1 AKT serine/threonine kinase 1 CLIC1

90 GAPDH glyceraldehyde-3-phosphate dehydrogenase AQP4, AQP5, CACNA1C,
CFTR, KCNN4, CLIC1

90 CDH1 cadherin 1 ANO1, AQP5
61 ERBB2 erb-b2 receptor tyrosine kinase 2 ANO1

58 EZH2 enhancer of zeste 2 polycomb repressive
complex 2 subunit CACNA1C

47 BRCA1 BRCA1, DNA repair associated CFTR
42 DNMT1 DNA methyltransferase 1 CFTR

Table 7. A list of ion channels interacting with top 15 EMT-related proteins with the highest degree
centrality measure in protein–protein interaction networks of modules on HM DEGs in breast cancer
GSE52604 dataset.

Dataset Degree EMT-Related Proteins Description Interacting Ion Channels

HM-GSE52604

117 AKT1 AKT serine/threonine kinase 1 ITPR3, CLIC1, GJB2
116 CDH1 cadherin 1 GJB2
84 NOTCH1 notch 1 KCNT1
75 MAPK1 mitogen-activated protein kinase 1 SCNN1G

Further, the correlations between the obtained EMT scores from each method and
the expression levels of the identified ion channels in tumor, metastatic and ion channels
interacting with EMT-related genes were computed (Table S12).

The ion channels CLIC2, GJA4, HTR3C, CLCN6, SCN3A, ANO3, LRRC8C and GJA5
were found to be negatively correlated to GS76 and positively correlated to both KS and
MLR scores in all three datasets, indicating that these ion channels might have a higher
probability of contributing to acquiring and/or stabilizing a mesenchymal phenotype.
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Nevertheless, all ion channels other than SCNN1G, CLCN3, KCNJ10 and KCNH2 had a
similar correlation trend in the expression values corresponding to one/more datasets.
Figure 6 depicts the correlation of each of the identified ion channels with the EMT scores.
The bubble plot represents the variation in the correlation of the genes with the three scoring
methods. It landscapes the fact that the ion channels that may have a higher probability of
contributing to the mesenchymal phenotype, correlating positively with the MLR and KS
methods and negatively with the GS76 method.

Table 8. A list of ion channels interacting with top 15 EMT-related proteins with the highest degree
centrality measure in protein–protein interaction networks of modules on HM DEGs in breast cancer
TCGA dataset.

Dataset Degree EMT-Related Proteins Description Interacting Ion Channels

HM-TCGA

59 GAPDH glyceraldehyde-3-phosphate dehydrogenase CLIC1, VDAC1, VDAC3
41 HSP90AA1 heat shock protein 90 alpha family class A member 1 KCNH2, VDAC1
34 CDKN2A cyclin dependent kinase inhibitor 2A KCNJ11
33 DNMT1 DNA methyltransferase 1 KCNJ10
31 HSPA4 heat shock protein family A (Hsp70) member 4 KCNH2, VDAC1
25 BIRC5 baculoviral IAP repeat containing 5 KCNJ6
24 CDC42 cell division cycle 42 CACNA2D2
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Figure 5. Correlation between GS76, MLR and KS scoring methods for samples from different plat-
forms. (A) Correlation between GS76, MLR and KS methods for samples from RNA-Seq TCGA data.
(B) Correlation between GS76, MLR and KS methods for samples from GSE42568 microarray data.
(C) Correlation between GS76, MLR and KS methods for samples from GSE52604 microarray data.
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Table 9. Correlation between GS76, MLR and KS EMT scoring methods across samples.

Dataset GS76.MLR-Cor GS76.MLR-pval GS76.KS-Cor GS76.KS-pval KS.MLR-Cor KS.MLR-pval

TCGA −0.843467533 <0.00001 −0.803881144 0.00 0.718122546 6.1098 × 10−221

GSE42568 −0.863655242 <0.00001 −0.876536316 <0.00001 0.770347822 <0.00001
GSE52604 −0.677929378 <0.00001 −0.923135739 <0.00001 0.673478229 <0.00001
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Figure 6. Correlation between ion channels (ICs) and EMT scores obtained using GS76, MLR and
KS methods. In the bubble plot, the x-axis consists of correlation values of ion channels with the KS
method, and the y-axis consists of correlation values with the MLR method. Each bubble corresponds
to a particular ion channel represented by different colors. The size of the bubble corresponds to the
correlation values of ion channels with GS76. TGCA data were used as RNA-Seq data and GSE42568
and GSE52604 were microarray datasets. (A–C) Correlation of ICs identified as interacting with
EMT-related genes with GS76, MLR and KS scores; (D–F) Correlation of ICs identified in tumor state
with GS76, MLR and KS scores; (G–I) Correlation of ICs identified in metastatic state with GS76,
MLR and KS scores.

3.5. Pathway Map of Identified Ion Channels and Their Associations with EMT

Generation of pathway maps depicting potential ion channels in several cellular pro-
cesses may aid in understanding their significance in various aspects of tumorigenesis
in breast cancer patients. Figure 7 summarizes the overall identified ion channels and
the events likely to occur in breast cancer patients when dysregulated ion channels func-
tion together with EMT-related genes. The pathway map consists of 66 molecules and
58 reactions. Several ion channels were differentially expressed and were found to have
significant roles in key cellular processes.
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Figure 7. Depiction of events that may occur in breast cancer patients upon dysregulation of ion
channels with EMT-related genes. The pathway map was generated using PathVisio (v3.3.0). Cancer
phenotypes may appear due to alterations in important cellular processes, such as calcium signaling,
insulin secretion, adipocyte metabolism, nitric oxide signaling and glutamatergic signaling.

3.6. Association of Identified Putative Ion Channels in Survival of Breast Cancer Patients

The ion channels with HR > 1 and a p(HR) < 0.05 were selected as significant ion
channels in survival of patients with breast cancer (Figure 8). Among the ion channels
identified in association with EMT-related genes and tumor/ metastatic states of breast
cancer, five ion channels—CACNA1B (HR: 1.14, p(HR): 0.001), ANO6 (HR: 1.54, p(HR):
0.004), TRPV3 (HR: 1.11, p(HR): 0.03), VDAC1 (HR: 2.10, p(HR): 0.0001) and VDAC2 (HR:
1.5, p(HR): 0.017) were found to be prognostically significant (Figure 8). The log-rank test
p-value was used to evaluate the 5-year survival of the patients with altered expression
of these ion channels. Patients with low expression of CACNA1B (p-value: 0.05), ANO6
(p-value: 0.032), TRPV3 (p-value: 0.27), VDAC1 (p-value: 0.011) and VDAC2 (p-value: 0.012)
had better survival than patients with higher expression. Overall survival analysis of the ion
channels using GEPIA in tumor state ion channels ANO5 (p-value: 0.16), LRRC8C (p-value:
0.48) and GLRB (p-value: 0.84) (Figure S5A–C) indicated high expression of genes correlated
with poor survival. Expression of metastatic state ion channels GRIK5 (p-value: 0.51) and
CLCNKB (p-value: 0.18) (Figure S5D,E) were also associated with survival in breast cancer
patients. Survival analysis of ion channels interacting with EMT-related genes showed
KCNN4 (p-value: 0.071), CFTR (p-value: 0.16), KCNJ10 (p-value: 0.17), VDAC1 (p-value:
0.000003) and VDAC2 (p-value: 0.052) (Figure S5F–J) the level of expression associated with
survival of breast cancer patients. High expression of the ion channels (exception: KCNN4)
could lead to poor patient survival. Low expression of KCNN4 indicated poor survival of
breast cancer patients.



Cancers 2022, 14, 1444 15 of 24

Cancers 2022, 14, x  17 of 26 
 

 

 

Figure 8. Kaplan–Meier 5-year survival curves representing the prognostic relationship between 

high and low expression of ion channels identified in breast cancer with survival probability. (A) 

CACNA1B, (B) ANO6, (C) TRPV3, (D) VDAC1, and (E) VDAC2. 

4. Discussion 

A deeper understanding of the role of ion channels in cells expressing cancerous phe-

notypes needs to be elucidated. Blockade of ion channels have been demonstrated to in-

fluence various pathophysiological conditions [40], making ion channels potential bi-

omarkers in cancer diagnosis and therapeutics. This study focused on the identification of 

putative ion channels in tumor and metastatic states and their association with EMT pro-

grams of breast cancer through various computational analyses. 

In the present study, analysis of transcriptomic data belonging to different platforms 

revealed the presence of several altered ion channels and EMT-related genes in patients 

with breast cancer. WGCNA of the altered ion channels led to the identification of signif-

icantly relevant co-expressed ion channels that were clustered into modules. Each of the 

selected modules consisted of a distinct set of ion channels. Although a few overlapping 

ion channels were noticed in the modules representing normal to tumor state and tumor 

to metastatic state of breast cancer. The normal to metastatic state modules appeared to 

be populated with a manifold of co-expressed ion channels as compared to the normal to 

tumor state modules. This could be an indication that as cancer progresses from normal 

Figure 8. Kaplan–Meier 5-year survival curves representing the prognostic relationship between
high and low expression of ion channels identified in breast cancer with survival probability.
(A) CACNA1B, (B) ANO6, (C) TRPV3, (D) VDAC1, and (E) VDAC2.

4. Discussion

A deeper understanding of the role of ion channels in cells expressing cancerous
phenotypes needs to be elucidated. Blockade of ion channels have been demonstrated
to influence various pathophysiological conditions [40], making ion channels potential
biomarkers in cancer diagnosis and therapeutics. This study focused on the identification
of putative ion channels in tumor and metastatic states and their association with EMT
programs of breast cancer through various computational analyses.

In the present study, analysis of transcriptomic data belonging to different platforms
revealed the presence of several altered ion channels and EMT-related genes in patients with
breast cancer. WGCNA of the altered ion channels led to the identification of significantly
relevant co-expressed ion channels that were clustered into modules. Each of the selected
modules consisted of a distinct set of ion channels. Although a few overlapping ion
channels were noticed in the modules representing normal to tumor state and tumor to
metastatic state of breast cancer. The normal to metastatic state modules appeared to be
populated with a manifold of co-expressed ion channels as compared to the normal to
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tumor state modules. This could be an indication that as cancer progresses from normal to
tumor and tumor to metastatic, the number of ion channels being deregulated aggravates.

Twenty-two unique ion channels in the tumor growth of breast cancer were identified
through this study. Of those, GJA1, AQP1, SCN4B and AQP7 were stated previously in
breast cancer tumor growth [41–44]. Similarly, PKD2, GJA4, KCNJ8, TRPC1, KCNJ2, KCND2,
KCNB1, CLIC5, CLIC2 and GABRE were previously reported to have a role in tumor growth
in several tumors [45–56]. HTR3C, CLCN6, GLRB, SCN3A, ANO3, ANO5, ANO6 and
LRRC8C were identified in this study as putative ion channels that may be implicated in
tumor growth and development in breast cancer.

4.1. Ion Channels Identified as Putative Ion Channels in the Tumor State of Breast Cancer

• HTR3C, a ligand-gated ion channel, is one of the receptors for serotonin, a hormone
that functions as a neurotransmitter and mitogen. Activation of this receptor causes
fast, depolarizing responses. Additionally, SCN3A, a voltage gated sodium channel,
is known to maintain depolarization in the enterochromaffin cells, which results in
the regulation of serotonin release [57]. Serotonin functions as a tumor-suppressant in
non-transformed breast cells and early-stage breast cancers. During tumor progression,
cells acquire genetic or epigenetic alterations in serotonin signaling. This makes them
resistant to suppressive actions of serotonin and favors tumor-promoting actions [58].

• CLCN6 is a voltage-dependent chloride channel and has a role in regulating blood
pressure levels and hypertension [59]. cMyc a protooncogene responsible for cell prolif-
eration in various cancers, transcriptionally regulates GRK4 protein that was reported
to be overexpressed in breast cancer tissues [60]. GRK4 has been demonstrated to
be associated with an increased risk of hypertension, indicating hypertension as an
important factor in breast cancer [60].

• GLRB, a glycine receptor, is a ligand-gated ion channel that mediates the inhibitory
effects of glycine. Vascular endothelial growth factor (VEGF) has a crucial role in cancer
progression as it promotes the formation of new blood vessels. Activation of VEGF
receptor results in activation of phospholipase C-gamma and increases intracellular
Ca2+ concentration. VEGF-induced cell proliferation is dependent on intracellular Ca2+

concentration. Hyperpolarization of the cell membrane due to glycine-gated chloride
channels blocks the influx of Ca2+, thereby minimizing VEGF-mediated signaling.
Thus, changes in the functioning of GLRB may promote tumor growth [61].

• Anoctamins (ANOs) are Ca2+ activated chloride channels. The activation of receptors
of growth hormone signaling takes place through RAS-RAF-ERK, PI3K-AKT and DAG-
IP3 pathways. It is known that anoctamin-controlled calcium channels are relevant
for the activation of ERK-1,2. Additionally, the rise in intracellular Ca2+ together with
activation of RAS-RAF/ERK pathway is a major aspect of cell proliferation [62]. ANO1
has been widely studied in various tumors in this respect. However, very few studies
have reported the involvement of other members of anoctamins. ANO3, ANO5 and
ANO6 were identified in this study.

• LRRC8C is a volume-regulated anion channel (VRAC). VRACs are activated on cell
swelling and play a critical role in cell volume regulation [63]. The Fad158 gene, which
has a crucial role in adipocyte differentiation, belongs to the LRRC8 family and is
also known as LRRC8C [64]. As adipocytes are the major components of breast tissue,
abnormal adipocyte metabolism leads to accumulation of tumor-supporting cells and
other effects, such as insulin resistance, dyslipidemia and oxidative stress [65]. These
effects may further lead to the aggressive nature of the tumor. Additionally, VRACs
are known to mediate cellular uptake of drugs, such as cisplatin and carboplatin,
which are widely used in the treatment of cancer [66]. However, LRRC8C was not
reported to have a direct effect on the uptake of these drugs but was stated to have a
possible role in mediating the action of LRRC8A [66].

The study also identified 22 unique ion channels in the metastatic state, of which
GRIK2, GJB3, KCNB2, KCNA1 and KCNK2 were previously reported in breast cancer metas-
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tasis [67–71]. Similarly, GABRG1, KCNQ3, GABRB2, GRIN2A, GRIA4, P2RX6, CACNA2D1,
SCNN1G and TRPC4 were previously reported in metastasis in various other tumors [72–83].
TRPV3, GABRG3, KCNT1, GJA5, KCNN1, GRIK5, CLCNKB and CHRNB2 were identified as
putative ion channels that might play a crucial role in breast cancer metastasis.

4.2. Ion Channels Identified as Putative Ion Channels in the Metastatic State of Breast Cancer

• TRPV3 is not a well-understood ion channel and can be activated by temperature.
Although it has been reported as overexpressed in non-small cell lung cancer [84].

• GABRG3 belongs to the GABA-A receptor gene family of hetero-pentameric ligand-
gated ion channels. GABA-A receptor GABRP is required for maintaining basal-like
cytokeratin expression, ERK1/2 phosphorylation and pro-migratory phenotype of
breast cancer cells [85]. GABA-B receptors promote metastasis by enhancing ERK
phosphorylation and thus activating metalloproteins that enable tumor cells to pene-
trate the basement membrane [86]. These studies indicate the importance of GABA
receptors in the metastatic progression of breast cancer.

• KCNT1 is a Na+ activated K+ channel with diverse functions, including insulin secre-
tion and cell volume regulation. With the help of insulin receptors, insulin regulates
endothelial cell migration, proliferation and production of VEGF. It also activates
PI3K/Akt signaling that promotes nitric oxide (NO) release. NO increases endothelial
survival, migration, proliferation and vascular permeability [87].

• KCNN1 is a Ca2+ dependent potassium channel involved in regulating cell volume.
Increased permeability of K+ due to activation of these channels results in membrane
hyperpolarization. This enhances Ca2+ entry and thus contributes to a decrease in the
regulatory volume of a cell [88].

• CLCNKB is a voltage-gated chloride channel. Chloride channels participate in cell
volume regulation, membrane potential stabilization, signal transduction and transep-
ithelial transport. CLCNKB has been widely studied in Bartter syndrome. Its role in
breast cancer is not well established. These channels aid in maintaining intracellular
ion concentration lower than extracellular ion concentration, preventing osmotic cell
swelling. Altered expression in these channels may result in osmotic stress contribut-
ing to cell migration [89].

• GJA5 is a member of the connexin family. Connexins are involved in the formation
of heterologous gap junctions between tumor and endothelial cells, which facilitate
intravasation and extravasation [90]. Various gap junctions have been reported in this
regard. Very few studies have reported GJA5 [91].

• GRIK5 belongs to the glutamate-gated ionic family. Cells with breast cancer phenotype
secrete high levels of glutamate and metastasize to bones. These cells with excess
glutamate result in cancer-induced bone pain, which is a significant co-morbidity in
advanced stage breast cancer patients [92].

A subset of ion channels, including GJA1, TRPC6, VDAC1 and AQP5, clustered
together with hub EMT-related genes when PPI network analysis of the combined gene set
was performed.

4.3. Ion Channels Interacting with Multiple Hub EMT-Related Genes in Breast Cancer

• GJA1 has roles in the cAMP pathway, Wnt signaling pathway and activation of p38.
It was also reported as a tumor suppressor and a potent molecule in the acceleration
of cancer progression [93].

• TRPC6 is present ubiquitously in human tissues and is involved in Ca2+ dependent
pathways. It is also known to be upregulated in various other disease conditions [94].

• TRPC1, another ion channel involved in modulation of Ca2+, is an established biomarker
in certain cancers [95].

• VDAC1 is a multifunctional channel involved in controlling the communications
between mitochondria and the rest of the cell [96].
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• ANO1 channel is involved in cell proliferation, survival, migration, contraction, secre-
tion and neuronal excitation [97].

• AQP5, an aquaporin, is involved in the movement of water across cellular membranes.
This process is one of the most important phenomena resulting in cell movement,
cellular viscosity and signal transductions [39].

• CLIC1 was identified in maintenance of cell volume, ion homeostasis, trans-epithelial
transport, pH regulation and cell cycle regulation [98].

• GJB2 regulates cell migration and colonization and thus aggressive phenotype in
breast cancer [99].

• KCNH2 was reported to be involved in cell proliferation and cell migration processes
implicating MAP kinase and c-fos pathways through a cell line study [100].

• CFTR, an anion channel, is known for its role in ion and acid-base homeostasis. It was
also reported as a tumor suppressor [101].

An increasing number of studies are currently aiming to gain insights into the EMT
program in cancer, which includes identifying and understanding the role of specific
ion channels in the induction and maintenance of various aspects of EMT programs.
The outcomes of these studies provide a preliminary perception that ion channels as ther-
apeutic targets may be useful to control EMT in cancer. The involvement of putative ion
channels in various cellular processes further substantiates its potential as a target. Thus,
ion channels correlating with EMT-related genes identified through this study may aid
in modulating several processes involved in tumor growth and progression and could
act as promising targets. Kaplan–Meier plots and Cox regression analysis determined the
prognostically significant ion channels in breast cancer among the putative ion channels.
Overall, this study could identify various ion channels in breast cancer. Nevertheless,
due to the data mining approach, the outcomes of the study may appear in the form of
overfitting or underfitting. Thus, further theoretical and experimental studies need to be
carried out to validate the obtained findings. Together, our analysis is a relevant data source
for ion channels in breast cancer and may help in its management.

5. Conclusions

A systems biology-based approach was used to identify putative ion channels in
tumor growth and metastasis and their correlation with EMT-related genes through anal-
ysis of RNA-Seq and microarray-based expression profiles of patients with breast cancer.
Amid the identified ion channels, also present were ion channels already established as
prognostic markers in breast cancer. Functional annotations of the altered ion channels led
to the identification of processes contributing to cell proliferation, cell migration and cell
volume regulation in breast cancer. However, detailed mechanisms underlying the possible
effects of the identified ion channels and their associations with EMT need to be further
characterized in vitro and in vivo.
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their corresponding EMT score estimated using GS76, MLR and KS EMT scoring methods, Table S10:
A list of samples present in GSE42568 dataset and their corresponding EMT score estimated using
GS76, MLR and KS EMT scoring methods, Table S11: List of samples present in GSE52604 dataset
and their corresponding EMT score estimated using GS76, MLR and KS EMT scoring methods,
Table S12: Correlation of expression values of ion channels identified as interacting with EMT and
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ICs identified in tumor and metastatic states belonging to RNA-Seq, GSE42568 and GSE52604 with
GS76, MLR and KS EMT scoring methods, Figure S1: Co-expressed ion channel modules based on the
non-redundant ion channel DEGs: (1) Identification of gene modules in HM based on the list of non-
redundant HM DEGs. (2) Identification of gene modules in TM based on the list of non-redundant
TM DEGs. (A) Gene module identification of expression data in RNA-Seq dataset. (B) Gene module
identification of expression data in GSE42568 dataset (i) Determination of soft-thresholding power for
WGCNA analysis (ii) Hierarchical clustering of genes into modules. Modules are assigned different
colours as depicted in the horizontal bar below the tree diagram. (iii) Module-trait relationship plot
for normal, tumor and metastatic samples. Rows correspond to modules depicted as different colours
and columns are the binary traits. Numbers in each cell are the correlation coefficient between module
eigengenes and the binary traits and the corresponding p-value (iv) Scatter plot of gene significance
for the binary trait vs the module membership in selected module. Figure S2: Co-expressed ion
channel modules based on the non-redundant ion channel and EMT DEGs: (1) Identification of gene
modules in HM based on the list of non-redundant HM DEGs. (2) Identification of gene modules in
TM based on the list of non-redundant TM DEGs. (3) Identification of gene modules in HT based on
the list of non-redundant HT DEGs. (A) Gene module identification of expression data in RNA-Seq
dataset. (B) Gene module identification of expression data in GSE42568 dataset. (C) Gene module
identification of expression data in GSE52604 dataset. (i) Determination of soft-thresholding power for
WGCNA analysis (ii) Hierarchical clustering of genes into modules. Modules are assigned different
colours as depicted in the horizontal bar below the tree diagram. (iii) Module-trait relationship plot
for normal, tumor and metastatic samples. Rows correspond to modules depicted as different colours
and columns are the binary traits. Numbers in each cell are the correlation coefficient between module
eigengenes and the binary traits and the corresponding p-value (iv) Scatter plot of gene significance
for the binary trait vs the module membership in selected module. Figure S3: Representation
of co-expression networks (CN) of selected modules containing combined gene-set. Black nodes
represent EMT-related genes and red nodes represent ion channels. The edges represent the weights
corresponding to each interaction. Higher the weight obtained through WGCNA darker is the edge
(A) CN for microarray (GSE42568) data based on the list of non-redundant HT DEGs. (B) CN for
microarray (GSE42568) data based on the list of non-redundant HM DEGs. (C) CN for microarray
(GSE42568) data based on the list of non-redundant TM DEGs. (D) CN for microarray (GSE52604) data
based on the list of HM DEGs (E) CN for RNA-Seq (TCGA) data based on the list of non-redundant
HT DEGs. (F) CN for RNA-Seq (TCGA) data based on the list of non-redundant HM DEGs. (G) CN
for RNA-Seq (TCGA) based on the list of non-redundant TM DEGs. Figure S4: Representation of
protein-protein interaction networks (PPIN) of combined gene-set. Nodes in shades of blue represent
EMT genes and yellow nodes represent ion channels. (A) PPIN for microarray (GSE42568) based
on the list of non-redundant TM DEGs (B) PPIN for microarray (GSE52604) based on the list of
non-redundant HM DEGs. (C) PPIN for RNA-Seq data based on the list of non-redundant HTDEGs.
(D) PPIN for RNA-Seq data based on the list of non-redundant HM DEGs. (E) PPIN for RNA-Seq data
based on the list of non-redundant TM DEGs. Figure S5: Kaplan-Meier survival curves representing
the prognostic relationship between high and low expression of ion channels identified in breast
cancer to overall survival (A) ANO5, (B) LRRC8C, (C) GLRB, (D) GRIK5 (E) CLCNKB, (F) CFTR,
(G) KCNJ10, (H) KCNN4, (I) VDAC1, (J) VDAC2.
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