
Journal of

Clinical Medicine

Article

An Integrative Systems Biology Approach Identifies Molecular
Signatures Associated with Gallbladder Cancer Pathogenesis

Nabanita Roy 1 , Mrinmoy Kshattry 1, Susmita Mandal 2, Mohit Kumar Jolly 2 , Dhruba Kumar Bhattacharyya 3

and Pankaj Barah 1,*

����������
�������

Citation: Roy, N.; Kshattry, M.;

Mandal, S.; Jolly, M.K.; Bhattacharyya,

D.K.; Barah, P. An Integrative

Systems Biology Approach Identifies

Molecular Signatures Associated with

Gallbladder Cancer Pathogenesis. J.

Clin. Med. 2021, 10, 3520. https://

doi.org/10.3390/jcm10163520

Academic Editors: Stanley W. Ashley

and Maria Lina Tornesello

Received: 4 May 2021

Accepted: 30 July 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Molecular Biology and Biotechnology, Tezpur University, Sonitpur 784028, India;
nitaroy@tezu.ernet.in (N.R.); mrinmoy3012@gmail.com (M.K.)

2 Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India;
susmita.mandal1894@gmail.com (S.M.); mkjolly@iisc.ac.in (M.K.J.)

3 Department of Computer Science and Engineering, Tezpur University, Sonitpur 784028, India;
dkb@tezu.ernet.in

* Correspondence: barah@tezu.ernet.in; Tel.: +91-3712-27-5415

Abstract: Gallbladder cancer (GBC) has a lower incidence rate among the population relative to
other cancer types but is a major contributor to the total number of biliary tract system cancer cases.
GBC is distinguished from other malignancies by its high mortality, marked geographical variation
and poor prognosis. To date no systemic targeted therapy is available for GBC. The main objective
of this study is to determine the molecular signatures correlated with GBC development using
integrative systems level approaches. We performed analysis of publicly available transcriptomic
data to identify differentially regulated genes and pathways. Differential co-expression network
analysis and transcriptional regulatory network analysis was performed to identify hub genes and
hub transcription factors (TFs) associated with GBC pathogenesis and progression. Subsequently, we
assessed the epithelial-mesenchymal transition (EMT) status of the hub genes using a combination
of three scoring methods. The identified hub genes including, CDC6, MAPK15, CCNB2, BIRC7,
L3MBTL1 were found to be regulators of cell cycle components which suggested their potential role
in GBC pathogenesis and progression.

Keywords: gallbladder cancer; transcriptomics; differentially expressed genes; co-expression net-
work; transcription factors; epithelial-mesenchymal-transition; cell cycle machinery

1. Introduction

The gallbladder is a small sac-like structure located beneath the liver that forms an
integral component of the biliary tract system. Gallbladder cancer (GBC) is the sixth most
frequent cancer of the gastrointestinal tract worldwide. GBC is an aggressive malignancy,
with rapid progression, poor prognosis and a high mortality rate resulting in an overall
5-year survival rate of only 5% [1,2]. The incidence rate of GBC is highly marked by distinct
geographic and ethnic disparities. Such regional and ethnic discrepancy in the incidence
rate of GBC cases indicates the differences in GBC etiology in different populations [2,3].
According to recent GLOBOCAN report (http://globocan.iarc.fr, accessed on 1 January
2018), GBC ranks in the 20th position among the most frequent cancer types, with approxi-
mately 0.2 million cases diagnosed annually. The incidence of GBC cases is highest in the
Eastern Europe, East Asian country and Latin American regions, with the incidence ratio
of GBC cases being the highest in South American countries such as Chile, Bolivia and
Ecuador and Asian countries, mainly including Korea, India, Japan and Pakistan [4,5].

GBC is an orphan disease and its etiology is multifactorial. The pathological spectrum
of GBC mainly progresses from metaplasia to dysplasia with subsequent carcinoma-in-
situ and cancer metastasis suggesting that an epithelial mesenchymal transition (EMT)
event might be an important phenomenon in GBC development. The detailed molecular
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mechanism of risk factors associated with GBC is not understood yet. There is no targeted
therapy available for GBC treatment. Hence, understanding the pathogenesis of GBC is
urgently needed [6,7]. DNA-based GWAS studies on GBC are limited at present. A few
recent studies have reported a potential association between mutation of the SNP variants
ABCB1, ABCB4 and DCC with GBC risk at genome-wide level [8]. Furthermore, high
throughput whole genome sequence (WGS) analysis has identified a few crucial genes
such as TP53, k-ras, EGFR etc., which were reported to be frequently mutated in GBC
patients [9–12].

At present, the most common approach for treating GBC is radical resection. However,
the majority of patients with GBC cannot undergo surgical resection due to aberrant clinical
manifestations. The symptoms become noticeable in cases where the cancer has already
invaded the nearby organs. In such situations, non-surgical therapies such as chemo- and
radiotherapy are the only options for treatment. According to the National Comprehensive
Cancer Network, single-agent therapy, which includes fluoropyrimidine or gemcitabine-
based treatment, and combination therapy regimen, which includes oxaliplatin, cisplatin
and capecitabine are the two chemotherapeutic options for GBC patients but both of these
are still undergoing clinical trials [13–16]. The PARP inhibitor olaparib is a novel therapeutic
drug that has shown significant improvement in patients with breast cancer and ovarian
cancer [17–19]. A recent study reported that a GBC patient with a combination of ATM
inactivation and STK11 frame-shift mutation showed significant response in inhibiting
GBC progression [20]. Till now there is no diagnostic and prognostic biomarker that can
detect GBC at the initial stage to potentially select patients who are most likely to benefit
from chemotherapy [21].

In recent years, systems approach has been evolving as one of the most promising
areas in biology and medicine. Systems-based multidisciplinary approaches can help to
understand the complexity of biological systems, as well as contribute to the discovery
of novel biomarkers for disease, drug targets and treatments. The advancement of high
throughput next generation sequencing (NGS) strategies such as transcriptome sequencing
has helped to generate benchmarked cancer-based datasets. Integrative analysis of such
datasets using network systems biology approaches provided a basis for investigating
biomolecules, and their pathological functions in malignancies. This can further help to
determine their potential role in developing efficient cancer treatment strategies [22,23].
Weighted gene co-expression network analysis (WGCNA) is a frequently used systems
biology-based method for determining the gene-gene correlation across samples that can
be used to identify modules containing clusters of highly correlated gene networks [24].

To this end, we have carried out analysis of GBC RNAseq dataset downloaded from
NCBI-GEO database. We have identified the potential genes and TFs associated with GBC
progression and pathogenesis through co-expression network analysis of normal and GBC
samples followed by transcriptional regulatory network analysis. Functional enrichment
analysis and EMT score calculation has also been carried out to identify crucial genes for
GBC pathogenesis.

2. Materials and Methods
2.1. Retrieval of GBC RNA-seq Dataset

A comprehensive and thorough search was conducted in the NCBI database for
relevant RNA-seq dataset on GBC. The datasets were checked carefully to be considered for
our study based on the following criteria: (i) the dataset must include case-control studies,
(ii) the dataset must be paired end and (iii) the sequencing platform for generating the data
and experimental protocol should be described in details. Based on the above-mentioned
criteria, we selected GSE139682 from NCBI-GEO database (GEO). The dataset comprised
of 20 samples in total obtained through resection surgery out of which 10 samples were of
GBC tissues and 10 samples were from normal matched tissue.

The GBC dataset was downloaded from NCBI-GEO database in the SRA format. The
SRA reads for each sample were converted to fastq reads using fastq-dump. Quality check
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of the fastq files was done using FastQC. The reads after quality control were aligned using
Hisat2 [25] against the reference human genome Homo sapiens (GRCh38). The mapped
reads were quantified at the gene level to obtain the count matrix for each gene using
featureCounts tool [26]. The DESeq2 tool [27] was used for normalization, and log2
transformation of the count matrix. DESeq2 computes the ratio of each gene count to the
logarithmic mean of all read counts for that gene across samples. This method identified
differentially expressed genes (DEGs) between disease and control conditions. The GBC
count data was normalized and transformed in DESeq2 input format, and the level of
shrinkage of each gene and the overall covariates were estimated using dispersion plot
and principle component analysis respectively. Finally, the significant DEGs of GBC were
sorted by considering p-adjusted value < 0.05.

2.2. Differential Gene Co-Expression Network Analysis

The gene co-expression network gives cluster of genes that are highly correlated.
In comparison to other biological network analysis methods, differential co-expression
networks can be used to build condition specific sub-networks [28]. The significant DEGs
were used as input to build gene co-expression network using the R package WGCNA [24].
Using WGCNA, two weighted gene co-expression networks were constructed for cancer
and control conditions. For each cancer and control dataset, Pearson’s correlations analysis
of each gene pair was used to build an adjacency matrix using the adjacency function of
the WGCNA package. Subsequently, the adjacency matrix was used to create a scale-free
co-expression network based on a soft-thresholding parameter βeta (β) to enrich strong
correlations between gene pairs [29]. The calculated adjacency matrix was converted into
Topological Overlap Matrix (TOM) by using the function TOMsimilarity. This topological
overlap matrix was then used as an input for performing hierarchical clustering using
the flashClust function for module identification. Finally, the network modules for cancer
and control dataset were identified using dynamicTreeCut (an R package) with a mini-
mum module size (minClusterSize) = 30, and minimum sensitivity (deepSplit) = 2 for the
gene dendrogram.

2.3. Module Preservation Analysis

Preservation analysis was performed to assess the non-preserved module between
the cancer network and control network. The basic statistics behind module preservation
is to evaluate the preservation of genes within a module by comparing a test network
(cancer) with a reference network (control) [24]. It is assumed that the genes embodied in
non-preserved modules of cancer network might play a role in the pathogenesis process
as compared to the control network. The preservation analysis was carried out using the
WGCNA function modulePreservation to determine the connectivity and weight of each
module of cancer and control network. The Preservation analysis statistics—Z-summary
and medianRank gives overall significance of the preservation of a module based on degree
and connectivity. The Z-summary preservation < 2 indicates no preservation, 2 ≤ Z-summary
≤ 10 suggests weak to moderate preservation, and Z-summary preservation > 10 implies
strong preservation [24]

2.4. Gene Ontology and Pathway Analysis of the Non-Preserved Module

For interpreting the biological role of significant DEGs identified from non-preserved
modules, functional enrichment and pathway analysis was performed using DAVID [30].
The significant DEGs for GBC were used for the GO analysis and KEGG pathway
analysis for identification of important cellular processes and pathways in GBC. The
top five GO terms for biological processes and KEGG pathway terms were estimated
with p-value < 0.05.
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2.5. Screening of Hub Genes from Non-Preserved Modules through Intramodular Connectivity and
PPIs Network Analysis

In network concept, connectivity is generally considered as the degree of nodes in
the network. In this study, we have used the intramodular connectivity approach for the
screening of hub genes within weakly preserved modules. The intramodular connectivity
measures the degree of each gene within a module. The criteria used for this study was
to calculate the connectivity from the whole network (kTotal) and the connectivity within
modules (kWithin). This measure of connectivity is useful to determine the biologically
significant modules by calculating the degree of genes within modules.

STRING database (version 10.0) [31] was used to predict potential interactions among
candidate genes at the protein level. A combined score of >0.4 was considered to be signifi-
cant. The protein-protein interaction (PPI) networks of the non-preserved modules were
created using the NetworkAnalyst tool [32]. The genes with high number of connections
with other genes/proteins were considered as hub genes.

2.6. Gene Regulatory Network (GRN) Analysis

From the gene regulatory network (GRN) information regarding the regulatory in-
teractions between transcriptional regulators and their target genes can be obtained [33].
Transcription factors are the key players in regulatory network interactions as they influ-
ence gene expression by binding to the start site of the gene promoter region. We have used
the significant DEGs as input to construct the regulatory network. The human TFs and
their position weight matrices (PWMs) were downloaded from the cis-BP database [34].
The matrix-scan tool were used to predict the interaction between the TFs and its target
genes. The results of the matrix-scan were filtered by setting a p-value cut off 10−4. The
TG-TF interactions data along with their prediction scores were represented in the form
of interactive network using the Cytoscape software [35]. Considering highest degree
centrality, the top six hub transcription factors (TFs) were identified.

2.7. EMT Scores Calculation

Epithelial-mesenchymal transitions (EMTs) play a critical role in cancer, particularly in
cancer metastasis, apoptotic inhibition, and therapeutic drug resistance, which ultimately
effects the overall survival of cancer patients. In this study, we have quantified the EMT
scores for each sample using three different scoring metrics—76 Gene Signatures (76Gs),
Multinomial Logistic Regression (MLR) and Kolmogorov Smirnov test (KS) [36–38]. In
76Gss, the higher the score of EMT, the more epithelial (E) the sample is, whereas, in case
of KS and MLR, the higher the EMT scores, the more mesenchymal (M) the sample is.

3. Results
3.1. Differential Gene Expressions in Gallbladder Cancer

To identify the differentially expressed molecular signatures in GBC, we have carried
out analysis of transcriptomic data from 10 tumor samples and 10 adjacent control samples
of GBC patients. The resulting data were normalized, and the transformed data were
visualized using dispersion and principal component analysis (Figure 1a,b). Two separate
clusters for GBC and control samples were identified in the PCA plot (Figure 1b). However,
the PCA plot showed that three control samples were diverted towards the GBC cluster.
This could be due to invasion of the adjacent control samples by cancer cells in GBC patients.
From the differential gene expression analysis, 2980 significant DEGs were identified in
GBC as compared to that of controls by taking Padj ≤ 0.05. Hierarchical clustering analysis
of the significant DEGs showed that the GBC and the adjacent control samples exhibited
differential gene expressions (Figure 1c). The significant DEGs identified in GBC are largely
linked to the cell cycle regulation and signal transduction processes (Figure 1d). This
suggests that genes related to cell cycle progression and checkpoint regulatory proteins
might be crucial for GBC development.
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Figure 1. Differential gene expression in GBC. (a) An estimate of the dispersion plot for mean of normalized counts.
(b) Principle component analysis of 10 GBC and 10 adjacent control samples. (c) Hierarchical clustering of top 100 significant
DEGs in GBC compared to that of control. (d) Significant biological processes associated with GBC.

3.2. Construction of Gene Co-Expression Network and Module Detection

For performing differential gene co-expression network analysis, the log2 transformed
gene expression values of significant 2980 DEGs for 10 GBC samples and 10 adjacent control
samples identified through DESeq2 were considered. The differential co-expression net-
works for GBC and control conditions were constructed separately using WGCNA package
in R. The co-expression network construction needs the selection of a soft thresholding
power β for satisfying scale-free topology of the network. The soft-thresholding power β
for GBC and control were 18 and 20, respectively (Supplementary Figure S1). Subsequently,
the modules with clusters of highly connected genes were identified using hierarchical
clustering approach. The branches in cluster dendrogram correspond to modules contain-
ing genes of high connectivity. A total of 18 and 20 modules were identified in control and
GBC condition respectively. The cluster dendrogram containing modules and heatmap
plot for control and GBC network is represented in Figure 2.
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Figure 2. Construction of differential gene co-expression networks. (a) Clustering dendrogram of
modules in control network and GBC network respectively. (b) Clustering dendrogram heatmap plot
with module colors based on topological overlap for control and GBC network respectively.

3.3. Detection of Non-Preserved Module from GBC and Control Co-Expression Network

The module preservation analysis from differential co-expression network was per-
formed to identify non-preserved modules in control and GBC condition using statistical
measures- Z-summary and medianRank, which calculate the extent of preservation based
on the connectivity of genes in each module. In this study, module preservation analysis
was performed by the following approaches: (i) GBC vs. control, where the cancer data
was considered as the test data and the reference data was the control data; (ii) control
vs. GBC, in which the control data was considered as the test data and the GBC data was
the reference data. The identification of non-preserved modules in both control and GBC
networks has been represented in Figure 3. The non-preserved modules give insights of
distinct molecular signatures in GBC modules compared to that of control modules.

In GBC to control module preservation analysis, three modules, salmon, tan and
grey60 were identified as the non-preserved module in GBC with Z-summary—1.4, 1.1, 0.86
and medianRank—20, 18, 19 respectively (Supplementary Table S1). For control to GBC
preservation analysis, two non-preserved modules were detected which were midnightblue
and royalblue with Z-summary preservation—0.91, 1.2 respectively. The medianRank of both
midnight and royalblue modules was 16 (Supplementary Table S2).
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Figure 3. Preservation analysis of modules based on Z-summary and medianRank. (a) Identification of modules in the
control condition. The modules in midnightblue and royalblue color are non-preserved. (b) Identification of modules in the
GBC condition. The modules in tan, salmon and grey60 color are non-preserved.

3.4. Hub Gene Identification from Non-Preserved Modules

The genes having high degree of connectivity or high correlations in significant
modules were regarded as hub genes. For hub gene identification, we have considered the
non-preserved modules identified from both GBC and control networks, and determined
their topological measure with respect to intra-modular connectivity. In total five genes
were considered as potential candidates in terms of correlation weight (degree). The
weight of the potential candidate genes identified through intra-modular connectivity
analysis is given in Table 1. The genes with highest intra-modular connectivity from each
module (hub gene) were AL009178.3 (a novel transcript), ADAM metallopeptidase domain
18 (ADAM18), mitogen-activated protein kinase 15 (MAPK), lethal 3 malignant brain
tumor-like protein 1 (L3MBTL1) and alkaline phospatase, placental-like 2 (ALPPL2).

Table 1. Identification of hub genes from non-preserved modules in GBC and control condition through Intramodular
connectivity approach.

Control to GBC GBC to Control

Midnightblue Royalblue Salmon Tan Grey60

Gene Weight Gene Weight Gene Weight Gene Weight Gene Weight

AL009178.3 2.87 ADAM18 2.87 MAPK15 12.51 L3MBTL1 11.38 ALPPL2 8.87
SPATC1 2.71 CNTN4 2.71 TRAPPC9 12.08 ZNF337-AS1 10.47 PATE4 8.01
CTSV 2.70 NUP62CL 2.70 OPLAH 11.72 AC099661.1 9.64 AP00842.3 7.85

AL353746.1 2.64 QTRT2 2.64 OTUD6B 10.97 AC240565 8.68 GPATCH1 7.80
AL360270.1 2.61 LINCO1517 2.61 TAF2 10.72 C1QTNF 8.14 AP000977.1 7.06

Subsequently, PPI networks for the genes in each of the non-preserved modules were
constructed, as shown in Figure 4. These genes were—baculoviral IAP repeat-containing
protein 7 (BIRC7), cyclin B2 (CCNB2), cell division cycle 6 (CDC6), L3MBTL1 and WD
repeat domain 88 (WDR88). All the identified were found to be upregulated in GBC,
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compared to the controls. This indicates that upregulation of these hub genes might drive
GBC development and progression. The top hub genes with degree centrality identified
through PPI network analysis is given in Table 2.
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Table 2. Hub gene identification from non-preserved modules through PPI network analysis.

Control to GBC GBC to Control

Midnightblue Royalblue Salmon Tan Grey60

Gene Degree Gene Degree Gene Degree Gene Degree Gene Degree

CDC6 30 BIRC7 12 CCNB2 30 L3MBTL1 34 WDR88 31
MCM3 28 CASP12 11 CCNE2 25 ABCG2 23 RPL3 31

SMURF1 22 UBC 6 E2F5 22 CTPS2 12 TIC6 23
PIK3AB 17 EPH7 6 MAPK15 15 SIM2 7 FOXA1 22

SHANK2 14 LINGO2 5 TONSL 12 PTP4A1 7 HIST3H2A 18

3.5. Functional and Annotation and Pathway Associated with Genes of the
Non-Preserved Modules

The functional GO terms and pathways associated with the gene modules were
identified using DAVID tool. The statistical significance of p-value < 0.05 were considered
for determining the important biological processes and KEGG pathways related to GBC
progression. The functional annotation analysis identified that the module genes were
mostly associated with cell cycle regulation processes, metabolic pathways and signal
transduction processes. The top ranked significant biological processes and pathways are
tabulated in Table 3; Table 4, respectively.
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Table 3. Enriched biological processes associated with non-preserved modules identified from GBC network.

Modules Biological Processes (GO Terms) Counts Genes p-Value

midnight blue intracellular signal transduction 4 NEK11, DGKB, GUCY1B2,
NUDT4 0.0390

royalblue negative regulation of DNA replication 2 S100A11, CDC6 0.0390

salmon

dorsal/ventral axis specification 2 PAX6, RGS20 0.0370
neuron migration 3 CELSR3, PAX6, PTK2 0.0420

negative regulation of keratinocytes proliferation 2 CTSV, EPPK1 0.0430
interphase of mitotic cell cycle 4 CCNB2, CCNE2, E2F5, TAF2 0.0382

grey60
Negative regulation of translation 2 FXF1, EIFAK1 0.00824

Cell fate commitment 3 FOXA1, HOXA11, TFAP2C 0.0131
Developmental growth HOXA11, TFAP2C, PLAC1 0.0186

tan
planar cell polarity pathway involved in axon guidance 2 VANGL2, RYK 0.0120

Epidermal cell differentiation 2 OVOL2, SPINK5 0.0160
Negative regulation of serine type

endopeptidase activity 2 SPINK1, SPINK5 0.0280

Table 4. Enriched KEGG pathways associated with non-preserved modules identified from GBC network.

Module KEGG Pathways Counts Genes p-Value

midnightblue

Glycerolipid metabolism 2 HLA-DMA 0.00683
Toxoplasmosis 2 DGKB, LIPC 0.0222

Apoptosis 2 CTSV, CASP12 0.0313
Glycosaminoglycan degradation 1 HYAL4 0.0382

royalblue Phosphotidyl inositol signaling 2 PIK3CB, ITPKA 0.00762
Cell cycle 2 MCM3, CDC6 0.0204

salmon

Cell cycle 3 E2F5, CCNB2, CCNE2 0.0450
Small cell lungs cancer 2 CCNE2, PTK2 0.0385

P53 signaling 2 CCNE2, CCEB2 0.0240
Ubiquine biosynthesis 1 COQ2T 0.0364

grey60

Thiamine metaboilism 1 ALPPL2 0.0266
Necroptosis 2 H2AW, RNF103-CHMP3 0.0292
Alcoholism 2 H2AW, H2BO1 0.0355

Histidine metabolism 1 ALDH3B2 0.0380

tan
Wnt signaling pathway 2 VANGL2, RYK 0.0321

Steroid biosynthesis 1 CYP24A1 0.0339

3.6. Identification of Hub Transcription Factors in GBC through TG-TF Regulatory
Network Analysis

Out of the 2980 DEGs, 106 DEGs code for transcription factors (TFs). Considering
these TFs as the source nodes and the DEGs (including the TFs) as the target nodes, we
created a transcriptional regulatory network. The degree distribution did not follow a
Poisson distribution (mean of degree distribution = 78.88603; variance of degree distri-
bution = 41,142.97) and hence, the network was not a random network. The topological
parameters of the network such as clustering coefficient, path length, network assortativity
were calculated using the R package igraph. The assortivity of the network was negative
i.e., −0.1024318, meaning the nodes with higher degrees tend to interact with nodes of
smaller degrees. This is in compliance with the observation that real-world networks tend
to have negative assortivity [39]. The degree coefficient γ, of the degree distribution was
calculated to be 5.467 and a power-law was fitted in the distribution. The hub TFs identified
in GBC were PAX6, KLF15, NR2F1, TFAP2C, FOXJ2 and FLR. Among these, PAX6, TFAP2C
and FOXJ2 were present in modules identified from GBC co-expression network.
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3.7. EMT Analysis Identified Differential EMT Patterns in Hub Transcription Factors

Next, we quantified the extent of epithelial-mesenchymal transition (EMT) that the
GBC samples had gone through. We used three different algorithms (76GS, KS, MLR)
that score the degree of EMT in transcriptomic data—while higher KS and MLR scores
indicate a more mesenchymal state, whereas a high 76GS score indicates a more epithelial
phenotype (Supplementary Table S3). Based on previous observations, 76GS scores are
expected to correlate negatively with KS and MLR scores for GBC samples. [40]. Indeed,
we observed a positive significant correlation between MLR and KS scores with both the
scores were negatively correlated with 76GS scores. This consistency indicates that the
EMT scoring methods well recapitulate the extent of EMT in GBC samples. Further, we
examined how the six hub TFs identified in GBC were associated with coordinating a more
epithelial vs. a more mesenchymal phenotype. Levels of KLF15 and NR2F1 associated
with a more mesenchymal state (i.e., positive correlation with KS and MLR scores and
negative correlation with 76GS scores). FOXJ2 also showed similar trends but they were not
statistically significant. On the other hand, FLR, PAX6 and TFAP2C were associated with
an epithelial state (i.e., positive correlation with 76GS scores, and negative correlation with
KS and MLR scores). Thus, the six hub TFs identified in GBC were associated differentially
with epithelial vs. mesenchymal status. They seem to form two ‘teams’ of players—one
promoting EMT, the other set inhibiting EMT. The hub TFs identified from TF-TG regulatory
network and its association with EMT event in GBC has been illustrated in Figure 5.
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tive correlation with KS and MLR scores). Thus, the six hub TFs identified in GBC were 
associated differentially with epithelial vs. mesenchymal status. They seem to form two 
‘teams’ of players—one promoting EMT, the other set inhibiting EMT. The hub TFs 
identified from TF-TG regulatory network and its association with EMT event in GBC 
has been illustrated in Figure 5. 
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Figure 5. Transcriptional regulatory network analysis of DEGs in GBC. (a) Identification of hub TFs
in GBC based on degree centrality. The red node represents the top hub TFs and small blue nodes
represent target genes. (b) Pairwise correlation of EMT score of hub TFs identified through TF-TG
interactions. The significance of each hub TFs is represented with a symbol- p-value < 0.001 (***);
p-value < 0.01 (**) and p-value < 0.05 (*).
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4. Discussions

Gallbladder cancer is a fatal malignancy of the biliary tract system. Standard molecular
screening of GBC is of the utmost necessity for detecting the onset of GBC at an early
stage and to reduce the mortality rate of patients suffering from GBC. Next-generation
sequencing techniques are being widely used in cancer-related studies. However, omics-
based studies have been limited in GBC due to the rarity of the disease. The therapeutic
strategies of GBC are also limited due to the lack of specific molecular targets. Hence, the
main objective of this study was to identify important genes and TFs potentially related to
GBC pathogenesis.

To this end, we have used an integrative systems-based approach to identify hub
genes (potential biomarkers) in GBC. Here we have analyzed a transcriptomic dataset
consisting of 10 GBC and 10 adjacent control samples. In total, 2980 significant DEGs
were identified in GBC samples compared to the controls. The identified DEGs were then
used to construct differential gene co-expression networks and to determine significant
co-expressed modules in both GBC and control samples. The functional annotations
and KEGG pathway analysis were further evaluated to identify significant biological
processes and pathways enriched in non-preserved modules. We analyzed and identified
the hub transcription factors from significant DEGs that might have important role in
gene regulation process during GBC development. The hub genes identified from the
non-preserved co-expressed modules were largely associated with cell cycle machinery
and signaling processes.

The cell cycle machinery is a highly regulated and intricate process which governs cell
growth, cell proliferation and cell division through its regulatory genes. Cell cycle regula-
tory molecule mostly involves growth-regulatory signaling proteins- CDK and CDKI and
associated genes/proteins that check for any anomalies throughout the genome. Disruption
in the regulation of cell cycle machinery/components are frequently observed in several
malignancies where it contributed to malignant transformation and resistance to cancer
drugs [41,42]. Numerous studies have reported the significance of cell cycle aberration
towards human cancer development. The cell cycle defects in cancer mainly involve uncon-
trolled proliferation through dysregulation in any of its cell cycle components either due to
CDK function mis-regulation, and/or decrease in the negative regulator of CDKI [43,44].
The most important component of the cell cycle machinery is the DNA replication initiation
process and pathway. The DNA synthesis process acts as a relay system of the cell cycle
process that connects various growth signaling network with DNA replication complex
and therefore this component serves as an important diagnostic and prognostic target [45].
The DNA replication and the mitotic process regulation are considered to be the central
players involved in these cell cycle phase transitions and therefore they not only are useful
cancer biomarkers, but also acts as potent targets for mechanism-based therapies [46], but
the initiation of oncogenesis process is not only associated with cell cycle components alone.
The development of malignant tumors involves mis-regulation of the cell death machinery
and cell–cell and/or cell–matrix interactions that co-operate with cell cycle defects [47].

The hub genes identified through differential gene co-expression networks analysis
followed by PPIs analysis were directly or indirectly associated with components of the
cell cycle system, apoptotic regulation and cell-cell adhesion process that ultimately give
rise to uncontrolled cell proliferation and later on to a full bloom malignancy. The hub
genes L3MBTL1, MAPK15, CCNB2 and CDC6 are crucial elements that act as a control
system for coordinated regulation of cell cycle system. L3MBTL1 is known to be a potential
tumor suppressor gene in Drosophila fly. It binds to the chromatin complex during S-phase
of the cell cycle and also regulates the target genes of E2F-RB negatively that are necessary
for S-phase initiation. L3MBTL1 was reported to be associated with breast cancer and
myeloid leukemia including AML [48–50]. The family of MAPK proteins plays a key role in
different cellular events such as cell differentiation, cell growth and development, cellular
transformation and apoptosis. It involves a sequence of protein kinase signaling cascade
which is important for regulation of cellular proliferation [51]. MAPK15 is known to be
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an important extracellular signal transducing kinase which is known to be activated by
human serum. The MAPK15 gene is unique as it does not have specific MEK upstream
regulation like other MAP kinases. The activity of MAPK15 is found to be modulated
by several oncogenes. Recent study reported the association of MAPK15 with BCR-ABL
mediated autophagy and its role in oncogene dependent cancer cell proliferation and
progression [52,53]. CCBN2 has been found to be linked with poor survival outcome in
gastric and hepatocellular cancer [54,55]. CDC6 also acts as a crucial player in cell cycle
system and acts as a replication licensing factor and governs the DNA replication process
through maintenance of the cell cycle checkpoints machinery. CDC6 is found to be reported
in initial stages of many cancers and also contributes to the oncogenic activities in tumor
development [56,57]. Aberrant CDC6 expression is reported to be associated with several
malignancies [58].

ADAM18, a membrane anchored gene (matrix metalloproteinase) of the ADAM
family proteins regulates cell adhesion via interaction with integrins. It plays an important
role in the release of biologically important ligands, such as tumor necrosis factor-alpha,
epidermal growth factors, transforming growth factor-alpha, and amphiregulin [59]. In
human cancer, overexpression of specific ADAMs is related to tumor progression and poor
outcome. Therefore, it is regarded as a potential target for cancer therapeutics, particularly
those cancers that are human epidermal growth factor (EGFR) receptor (EGFR) ligands or
TNF-alpha positive [60,61].

ALPPL2 belongs to the member of the ALPP alkaline phosphatases which are reported
to be associated with tumor initiation. It was reported as a specific and targeted tumor cell
surface antigen. It is significantly associated with gastric cancer and pancreatic cancer and
also acts as a novel protein in pancreatic cancer [62,63].

BIRC7, a novel member of the IAP family, is found to be highly overexpressed in
various cancer types. BIRC7 was found to be overexpressed in 66% of the cancers and to be
absent in normal cells/tissues. The function of BIRC7 gene is mainly related to apoptotic
regulation and signaling processes. The overexpression of BIRC7 in cancers is reported
to be associated with cancer drug and radiotherapy resistance, disease recurrence and
poor survival [64,65]. Moreover, increased expression of BIRC7 was found in extrahepatic
cholangiocarcinoma and was significantly associated with poor prognosis and overall
survival of the patient [66]. WD repeat domain 88 (WDR88) present on chromosome 19
is known to be important biomarker for early prostate cancer development. This gene is
evolutionarily conserved and can found in 167 organisms as an orthologous gene. Hence
this gene might act as an important target in GBC [67].

We observed that genes related to cell cycle regulatory and signal transduction pro-
cesses were essential and significant in pathogenesis of GBC. The genes and TFs identified
from the non-preserved modules may play key roles in the pathogenesis of GBC. The
identified hub genes provided the basis for further in-depth studies for development of
prognostic, diagnostic and therapeutic biomarkers. In summary, this study used differen-
tially co-expression network analysis and transcriptional regulatory network analysis to
identify key hub genes associated with GBC pathogenesis.
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.3390/jcm10163520/s1, Figure S1: β power value for GBC and control network respectively generated
through gene co-expression network construction. Table S1: Z-summary preservation of modules in
GBC network, Table S2: Z-summary preservation of modules in control network, Table S3: Pairwise
correlation analysis of each sample using three EMT scoring metrices- KS, MLR and 76GS (negative
strong correlation between 76GS and KS or MLR, positive strong correlation between MLR and KS).
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