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Cellular heterogeneity along the epithelial-mesenchymal plasticity (EMP) spec-
trum is a paramount feature observed in tumors and circulating tumor cells
(CTCs). High-throughput techniques now offer unprecedented details on this
variability at a single-cell resolution. Yet, there is no current consensus about
how EMP in tumors propagates to that in CTCs. To investigate the relation-
ship between EMP-associated heterogeneity of tumors and that of CTCs, we
integrated transcriptomic analysis and biophysical modeling. We apply three
epithelial-mesenchymal transition (EMT) scoring metrics to multiple tumor
samples andCTCdatasets from several cancer types.Moreover, we develop a bio-
physical model that couples EMT-associated phenotypic switching in a primary
tumor with cell migration. Finally, we integrate EMT transcriptomic analysis
and in silico modeling to evaluate the predictive power of several measurements
of tumor aggressiveness, including tumor EMT score, CTC EMT score, fraction
of CTC clusters found in circulation, and CTC cluster size distribution. Anal-
ysis of high-throughput datasets reveals a pronounced heterogeneity without a
well-defined relation between EMT traits in tumors and CTCs. Moreover, math-
ematical modeling predicts different phases where CTCs can be less, equally, or
more mesenchymal than primary tumor depending on the dynamics of pheno-
typic transition and cell migration. Consistently, various datasets of CTC cluster
size distribution from different cancer types are fitted onto different regimes of
the model. By further constraining the model with experimental measurements
of tumor EMT score, CTC EMT score, and fraction of CTC cluster in blood-
stream, we show that none of these assays alone can provide sufficient informa-
tion to predict the other variables. In conclusion,we propose that the relationship
between EMT progression in tumors and CTCs can be variable, and in general,
predicting one from the other may not be as straightforward as tacitly assumed.
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1 INTRODUCTION

Epithelial-mesenchymal transition (EMT) (now increas-
ingly referred to as epithelial-mesenchymal plasticity
[EMP]) is a crucial axis of tumor progression that regulates
motility, resistance to therapies and proliferation [1]. Dur-
ing EMT, epithelial cancer cells can partially or completely
lose their E-cadherin-mediated cell-cell adhesion and api-
cobasal polarity, instead of becoming motile, mesenchy-
mal cells [2]. Recent experimental and computational find-
ings suggest that EMT is not necessarily a binary process;
instead cells can manifest one or more hybrid E/M phe-
notype(s) with mixed traits of epithelial and mesenchymal
cells along the EMT (or EMP) spectrum [3–8].
Indeed, cellular heterogeneity is emerging as a hallmark

of cancer, with cells with distinct EMT phenotypes often
localized in distinct tumor regions [9,10]. Similarly, cir-
culating tumor cells (CTCs) that launch into circulation
to give rise to metastasis can exhibit a spectrum of EMT
features [11]. Hybrid E/M cancer cells that partially con-
serve cell adhesion can travel the bloodstream collectively
as highly metastatic CTC clusters [12]. Recent advances in
high-throughput techniques such as RNA-sequencing are
providing insights into themulti-faceted dynamics of EMT,
predicting the number of intermediate hybrid E/M states
and the most probable EMT trajectories [7]. However,
this heterogeneity sparks questions about the relationship
between EMT progression in primary tumors and CTCs. Is
it possible to reliably predict the composition of a tumor
from gene expression measurements of CTCs, and/or vice
versa, or does the relationship between EMT progression
in tumors and CTCs depend on tumor type, subtype, or
even patient-specific factors? Furthermore, howmuch can
be said about EMT progression in tumors by measuring
statistical properties of CTCmigration, such as the fraction
of CTC clusters or CTC cluster size distribution from blood
samples?
Here,we tackle these open questions by integrating tran-

scriptomic analysis and computational modeling. First, we
apply three EMT scoring metrics to several tumor and
CTC datasets; these scores, which correlate well with one
another, demonstrate that the EMT traits of tumors and
CTCs are highly heterogeneous, raising questions about
how much can be predicted about the EMT score of CTCs
from the primary tumor and vice versa. To further inves-
tigate this heterogeneity and interdependence of EMT in
tumors andCTCs,we turn to in silico biophysicalmodeling
that couples EMT in the primary tumor and cell migration.
The model reveals different parameter regions in which
CTCs can either be more mesenchymal or more epithe-
lial than the primary tumor, depending on the rate of EMT

and migration dynamics (collective vs individual). More-
over, several CTC cluster size distribution datasets sam-
pled fromdifferent tumors aremapped onto different para-
metric combinations in the model description, suggesting
that the heterogeneous tumor-CTC EMT relation could
be an important aspect in vivo. Finally, we integrate the
EMT scoring and biophysical model in a single computa-
tional pipeline to investigate howmuch can be predicted by
this biophysical model, in terms of tumor and CTC EMT
score, CTC cluster fraction, and CTC cluster size distri-
bution, when only one of these variables is provided as
an input.

2 MATERIALS ANDMETHODS

2.1 Data analysis

We calculated EMT scores for multiple primary tumor and
CTC datasets using three different EMT metrics – 76 gene
signature (76GS), Kolmogorov-Smirnov (KS), and Multi-
nomial Linear Regression (MLR) [13–15]. We also calcu-
lated correlations in the EMT scores of samples for a given
dataset using Spearman’s and Pearson’s correlation coeffi-
cient values.

2.2 EMTmodel

The biophysical model focuses on cells at the periphery
of a tumor that have the potential to undergo EMT and
migrate as CTCs individually or as a cluster. Therefore,
cells in the model are arranged on a one-dimensional lat-
tice that represents the tumor invading edge. Conversely,
cells in the more internal layers are not modeled explic-
itly since they lack the physical space to migrate. Starting
from an epithelial state, cells at the invading edge undergo
transitions with a rate (k) through a number of interme-
diate hybrid E/M states, and eventually to a mesenchymal
state.
Mesenchymal cells can migrate from the cell layer as

individual cells; conversely, clusters of neighboring hybrid
E/M cells can migrate together as multicellular units. The
migration rate of clusters depends on 1. the number of cells
in the cluster (i.e. the cluster size), 2. the EMT state of
neighboring cells as cell-cell adhesion bonds must be bro-
ken, and 3. a migration cooperativity parameter (c) that
quantifies the propensity to collective migration. While a
low c favorites individual migration, a large c promotes
clustered migration if hybrid E/M cells are in contact.
The migration is simply modeled as a discrete event, and



BOCCI et al. 3 of 12

the physical motion of the migrating cells is not consid-
ered explicitly. When a single cell or cluster migrates,
cells are instantaneously replaced by new epithelial cells.
This process, which ensures a constant number of cells
in the invading layer, considers the emergence of interior
cells that become exposed to EMT-inducing signals once
peripheral cells migrate.
The dynamics of cell fractions with a generic number

(N) of hybrid E/M states are described by a set of ordinary
differential equations:
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In Eqs 1–3, k is an EMT rate in arbitrary, dimensionless
units. Eq. 2 represents the dynamics of the i-th hybrid E/M
state cell population, which is increased due to transitions
from the i-1 state (+𝑘 𝜌𝐻𝑖−1

) and decreased by transitions
to the i+1 state (−𝑘 𝜌𝐻𝑖

). The supplementary section (SI
section 1.1) shows the form of the equations for the case of
three intermediate states (E-like, E/M, and M-like) that is
used throughout most of the paper. Furthermore, the term
Θ(𝜌𝐻1

, 𝜌𝐻2
, … , 𝜌𝐻𝑁

) quantifies the loss of hybrid E/M cells
due to migration out of the lattice (either as single cells
or multicellular clusters); the explicit form of this term is
derived in the supplementary information (SI section 1.2-
1.5). The mesenchymal cell fraction (eq. 3) increases due
to transition from the terminal hybrid E/M state (+𝑘 𝜌𝐻𝑁

)
and decreases due to single cell migration (−𝜌𝑀). Since
migrating cells are replaced by new epithelial cells, the
epithelial cell fraction (eq. 1) increased via an influx equal
to the migration loss (+Θ(𝜌𝐻1

, 𝜌𝐻2
, … , 𝜌𝐻𝑁

) + 𝜌𝑀). It is
worth noting that all migration rates in Eqs 1–3 are not
explicitly multiplied by a migration rate constant; since
the model is dimensionless, time is rescaled so that this
parameter is equal to 1. Therefore, the EMT rate (k) can be
thought of as a ratio between the EMT rate and cell migra-
tion rate.
Custom-made python scripts to solve the model

and reproduce the results are freely available at
https://github.com/federicobocci/Biophysical-model-of-
EMT-heterogeneity.

3 RESULTS

3.1 EMT scoring metrics analysis
reveals heterogeneity in primary tumors
and CTCs across cancer types

Recent approaches have investigated the varying degrees of
EMT in CTCs using a handful of markers and their asso-
ciation with patient survival across cancer types [16–20].
Further, there has been a surge of high-throughput mea-
surement such as RNA-seq of CTCs [21–23] as well
as primary tumor [24–26], including investigations at
a single-cell level. Given the heterogeneity of assessing
EMT in multiple studies using diverse markers [27], such
transcriptomics-basedmeasurements can enable quantify-
ing EMT in amore systematicmanner using different scor-
ing methods.
We calculated the EMT scores of multiple publicly avail-

able datasets associated with CTCs, using three different
EMT metrics: 76GS, KS, and MLR [28]. These three meth-
ods use different gene lists and algorithms and have been
developed based on pan-cancer signatures of EMT identi-
fied from preclinical (in vitro) and/or clinical data [13–15].
Thus, these scores can indicate the extent of EMT in a cell
line, primary/metastatic tumor or CTC has undergone.
The more epithelial a sample is, the lower its KS score

(on a scale of [-1, 1]) or MLR score (on a scale of [0, 2]) and
the higher is its 76GS score (no a priori defined range of
values). Thus, for a given dataset, while we expected a pos-
itive correlation betweenMLR and KS scores, we expected
76GS scores to correlate negatively with KS andMLR ones.
EMT scores of four breast cancer CTC cell lines and

their metastatic variants [29] (GSE112855) using the above-
mentioned three metrics, displayed heterogeneity in their
EMT-ness (Figures 1A, S1A-E, S2A-C). However, none
of these cell/sub lines could be classified as strongly
mesenchymal, based on scores across the three metrics.
Next, CTCs from various breast cancer patients exhib-
ited heterogeneity [30] (PRJNA471754); however, the sam-
ples were overall shifted toward a more mesenchymal end
of the spectrum as compared to breast cancer cell lines
(GSE112855) (Figures 1B, S1F-J). Further, we examined
the EMT-ness of individual CTCs and clusters of CTCs
isolated from xenograft models as well as breast cancer
patients [31] (GSE111065). Interestingly, while the EMT-
ness of individual CTCs varied more along a spectrum, the
EMT scores of CTC clusters followed a more bimodal dis-
tribution with a large difference in corresponding EMT-
ness (Figures 1C and 1D, S2D-I, S3A-J). Put together, these
results suggested that CTCs either freshly isolated from
patients or established in culture as cell lines showed con-
siderable heterogeneity in their EMT scores as assessed
via these three independent EMT metrics. Interestingly,

https://github.com/federicobocci/Biophysical-model-of-EMT-heterogeneity
https://github.com/federicobocci/Biophysical-model-of-EMT-heterogeneity
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F IGURE 1 Heterogeneity in EMT scores of CTCs and primary tumors, calculated from corresponding transcriptomic data (publicly
available microarray or RNA data). (A) Correlation between 76GS and MLR scores for GSE112855 (CTC-derived cell lines/sub lines in breast
cancer) dataset. Each dot shows a sample in the dataset. Pearson’s correlation values (r, p) are reported. n = number of samples. (B) Same as
(A) but for individual CTCs in PRJNA471754. (C and D) Same as (A) but for single CTCs and CTC clusters separately in GSE111065. (E and F)
Comparison of EMT scores (KS, MLR) for CTC and primary tumor for GSE111842 (*p < 0.0001). (G) Comparison of 76GS EMT scores for
GSE50991 for 2D culture versus 4D culture of CTCs isolated from A549 lung cancer cells (*p < 0.0001). Students’ two-tailed t-test was used in
panels E, F, G

the EMT status of CTCs was also found to be different
depending on cultured in petridish (2D) versus in a 4D
ex vivo model for a lung cancer cell line [32] (GSE50991)
(Figure 1G).
We also calculated the EMT scores of CTCs isolated

from 16 patients in Stage II-III breast cancer and pri-
mary tumor available from 12 of them [33], and found
CTCs to be relatively more mesenchymal than primary
tumors (GSE111842) (Figures 1E and 1F). This observation
prompted us to interrogate if the EMT status of primary
tumor and CTCs can be informative of one another, that is
can one predict the EMT status of primary tumor based on
that of CTCs or vice-versa?

3.2 A biophysical model to investigate
EMT heterogeneity

Transcriptomic analysis of tumor samples and CTCs
highlighted heterogeneity in EMT scoring. Therefore, we
further sought to understand the relationship between
EMT-ness of primary tumor and CTCs using a simple

coarse-grained biophysical model that couples phenotypic
transitions driven by EMT with cell migration in the
primary tumor [34].
In this model, cells are arranged on a lattice that repre-

sents the invading edge of a tumor. Based on the hetero-
geneity in EMT scores observed in CTCs, we considered
a model with three intermediate states, E-like, E/M, M-
like that are progressively less epithelial and more mes-
enchymal, in addition to the "pure" epithelial and mes-
enchymal ones (Figure 2A, top). Moreover, cells undergo-
ing EMT can migrate from the lattice. While mesenchy-
mal cells are assumed to migrate only as single cells,
hybrid E/M cells in the E-like, E/M, and M-like states
can migrate together as multicellular clusters if in spatial
proximity (Figure 2A, bottom). The output of the model is
the steady state fractions of cells in various EMT pheno-
types in the tumor (E, E-like, E/M, M-like, M) as a func-
tion of the main model’s two parameters: the EMT rate
(k), which describes the speed of EMT transitions and
migration cooperativity (c), which describes the propen-
sity of hybrid E/M cells tomigrate together asmulticellular
clusters.
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F IGURE 2 Single cell-cluster migration transition in the EMT-migration model. (A) Overview of the EMT-migration model. Top: cells
undergo transitions through three hybrid E/M states with rate k. Bottom: mesenchymal cells migrate as single cells, while hybrid E/M cells
can migrate together as multicellular clusters. Migrating cells are replaced by new Epithelial cells. (B) Fraction of Epithelial, E-like, E/M,
M-like and Mesenchymal cells in the primary tumor as a function of the EMT rate (k) for a fixed value of c = 2.5. (C) Three predicted CTC
cluster size distributions for a fixed EMT rate (k = 1) and increasing migration cooperativity (c). (D) Fraction of CTC clusters as a function of
EMT rate (k) and migration cooperativity (c)

The relaxation to steady state depends on two
timescales: the EMT rate (k) and the migration rate,
which is fixed to unit value and never varied in the
model (Methods – EMT model). Starting from an initially
epithelial lattice, the model relaxes to its steady state with
a speed that depends on the parameter choice (Figure
S4). Considering that the timescales for EMT and cell
migration are fast compared to the typical timescales
of tumor progression [35], from now on we will always
analyze the model at steady state.
We observed that varying the rate of EMT (k) at fixed

cooperativity (c) can change the steady state fraction of
cells with distinct EMT phenotypes in the tumor lattice:
while cells are mostly epithelial for low values of k, more

and more cells convert to the E-like, E/M, and M-like
states as the value of k increases. Eventually, most cells are
mesenchymal for large k (Figure 2B). Moreover, fixing k
and increasing c lead to a change in the migration strategy.
At low c, the size distribution of escaping CTCs is domi-
nated by single cells; conversely, larger values of c lead to
an increased probability to observe multicellular clusters
of two or more cells (Figure 2C). More generally, varying
both parameters trigger a transition from single cell
migration to clustered cell migration, as seen for instance
by inspecting the fraction of escape event of clusters of
two or more cells, or cluster escape fraction (Figure 2D),
as well as changes in the steady state cell fractions
(Figure S5).
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Next, we investigated the implications of this model in
the context of tumor-CTC EMT score relationship to pro-
vide a rationale for the observed EMT score heterogeneity
in tumor and CTCs.

3.3 Collective cell migration can lead to
non-trivial tumor-CTC score relationship

To investigate the relation between EMT progression
in the primary tumor and CTCs, we define an EMT
scoring metric in the biophysical model that can be
directly compared to the scores computed in cancer
datasets. Specifically, we define a metric (𝑆) that can
be directly compared to the MLR score. This choice is
motivated by the observation that unlike the 76GS and
KS metrics [13,14], the MLR score specifically focused
on identifying a hybrid E/M signature [15]. Mimicking
the MLR score, cells on the EMT spectrum are assigned
weights ranging from 0 (epithelial) to 2 (mesenchymal).
Thus, for a five-state model, the weights for E, E-like,
E/M, M-like, and M states are (𝑤𝐸, 𝑤𝐻1,𝑤𝐻2,𝑤𝐻3,𝑤𝑀) =

(0, 0.5, 1, 1.5, 2). The tumor EMT score is defined as
a weighted sum of the steady state fractions of cells:
𝑆𝑇 = 𝑤𝐸 𝜌𝐸 + 𝑤𝐻1𝜌𝐻1+𝑤ℎ2𝜌𝐻2+𝑤𝐻3𝜌𝐻3+𝑤𝑀𝜌𝑀 .
Similarly, a score can be defined for the CTCs
by considering the fractions of migrating cells
with different EMT phenotypes (𝜑𝐻1,𝜑𝐻2,𝜑𝐻3,𝜑𝑀):
𝑆𝐶𝑇𝐶 = 𝑤𝐻1𝜑𝐻1 +𝑤ℎ2𝜑𝐻2+𝑤𝐻3𝜑𝐻3+𝑤𝑀𝜑𝑀 . Notably,
since E cells cannot migrate in our model formula-
tion, 𝑆𝐶𝑇𝐶only considers three hybrid states and the
mesenchymal state.
The tumor score (𝑆𝑇) is very close to zero (i.e. strongly

epithelial) for models with low EMT rate (𝑘 ≪ 1, Fig-
ure 3A, left), and continuously increases to hybrid E/M
andmesenchymal for increasing k (Figure 3A, left to right).
Interestingly, a larger migration cooperativity (c) increases
the propensity of hybrid E/M cells to undergo cluster-
based migration before transitioning to a mesenchymal
state, thus decreasing the tumor score (Figure 3A, bot-
tom to top). Similarly, the CTC score (𝑆𝐶𝑇𝐶) increases with
k because more cells undergo a complete EMT before
migrating and decreases with c because cells tend to
migrate collectively as hybrid E/M rather than as single
mesenchymal cells (Figure 3B). For most (k, c) param-
eter combinations, CTCs have a larger EMT score than
the tumor (Figure 3C, red-shaded region). Strikingly, a
condition of fast EMT and high migration cooperativity
(i.e. large k, c) gives rise to a switch where 𝑆𝐶𝑇𝐶 < 𝑆𝑇
(Figure 3C, blue-shaded region). Overall, the relationship
between 𝑆𝑇 and 𝑆𝐶𝑇𝐶 is not a fixed one but depends on (k,
c), that is more heterogeneous, thus making it difficult to
predict one from the another (Figure 3D). Generally speak-

ing, CTCs are more mesenchymal than primary tumor in
models with low EMT rate; conversely, CTCs can either
be more or less mesenchymal than primary tumor at high
EMT rate depending on the value of the migration cooper-
ativity (c). This dependence on themodel’s parameters can
be observed in models with variable number of intermedi-
ate states, indicating that it represents a robust feature (Fig-
ure S6). From a clinical standpoint, this observation under-
scores the difficulty to fully characterize an invading tumor
in terms of EMT when only considering samples from pri-
mary tumor or vice versa. These results suggest that differ-
ent cancer types, subtypes, and potentially even patients,
might lie in different regions of the score diagram shown
below.

3.4 Analysis of CTC cluster size
distribution reveals variability of tumor
and CTC scores across cancer types

Our EMTbiophysicalmodel predicts a heterogeneous rela-
tionship between the EMT score of primary tumors and
that of CTCs. To investigate this prediction,we analyze sev-
eral CTC cluster size distributions obtained experimentally
through the lens of our model. In these datasets, which
were obtained from different cancer types, single CTCs
and CTC clusters were isolated with various techniques
to obtain a frequency count or probability to observe CTC
clusters with variable number of cells [36–42]. Specifically,
we consider eight separate datasets isolated from either
mouse models or patients from melanoma, glioblastoma,
myeloma, ovarian, prostate, and breast cancer [36–42]. By
fitting the model’s CTC size distribution to the experi-
mental distributions, we identify the parameter combina-
tions (k, c) that can best fit corresponding experimental
data (SI section 1.6). Plotting the position of the datasets
on the (k, c) plane against the model’s score diagram
highlights a striking heterogeneity in terms of position-
ing of these datasets (Figure 4A). In three datasets mea-
sured from melanoma, ovarian, and prostate cancer, the
CTCs are predicted to be considerably more mesenchymal
than their corresponding tumor. However, in three other
datasets from breast cancer and glioblastoma, this differ-
ence is less pronounced. Finally, two datasets from breast
cancer and myeloma, respectively, are predicted to fall
into the "inversion" region where CTCs are less mesenchy-
mal than the tumor (Figure 4B). Therefore, the model
predicts that the association between EMT-ness in a pri-
mary tumor and CTCs can depend on the tumor type.
Intriguingly, evenwithin same tumor, there seems to be no
generic trend in terms of EMT scores of CTCs and primary
tumors, as seen in the three datasets all from breast cancer
models.
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F IGURE 3 Inversions in tumor and CTC EMT scoring metrics. Predicted EMT score of primary tumor 𝑇𝑆 (A), migrating cells, defined
as both single CTCs and CTC clusters 𝐶𝑇𝐶𝑆 (B), and difference between them 𝐶𝑇𝐶𝑆 − 𝑇𝑆 (C) as a function of EMT rate (k) and migration
cooperativity (c). (D) Possible combinations of EMT scores for tumor and CTCs. The scores are classified as epithelial (𝑠 < 0.5), hybrid E/M
(0.5 < 𝑠 < 1.5) or mesenchymal (𝑠 > 1.5). For instance, (E, E/M) indicates that the tumor has an epithelial score and the CTCs have a hybrid
E/M score, and so forth

Adding to this complexity, some of these CTC cluster
size distributions consider patients with different treat-
ment regimes. For instance, an ovarian cancer dataset
(Meunier and collaborators [37]) includes patients pre- and
post-chemotherapy; a prostate cancer dataset (Kozminsky
and collaborators [38]) contains data frompatients exposed
to several different hormone therapies; and a glioblas-
toma dataset includes patients treated with a micro-
tubule inhibitor (Krol and collaborators [40]). Therefore,
responses to different drugs could potentially represent an
additional axis of variability in the EMT score relationship
between tumors and CTCs.

3.5 Exploring the predictive power of
several measurements that quantify tumor
aggressiveness

Motivated by the non-trivial relation between EMT scores
of tumor and CTCs predicted by the model, we reviewed
various types of measurements typically used to estimate
tumor aggressiveness. These includeEMT scores of tumors
and CTCs that can be computed from single cell gene
expression measurements, CTC cluster fraction in circula-
tion, and full CTC cluster size distribution. We constraint
the model with each of these assays to investigate how
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F IGURE 4 Heterogeneous tumor-CTC EMT score relationships in several CTC size distributions across cancer types. (A) best model fit
on the (k,c) parameter space for various CTC cluster size distributions [36–42]. Each starred dot represents a CTC cluster size distribution that
was fitted with the five-state model; the x- and y-coordinates indicate the (k,c) parameter combination yielding the best fit defined in terms of
minimal root square distance between experimental distribution and model prediction. (B) predicted tumor and CTC scores based on model’s
fit

many of the other variables can be predicted using our
model (Figure 5A).
First, we consider the case where the EMT score of the

tumor is known; this is a typical scenario if gene expres-
sion from a tumor sample is analyzed, either at a single-
cell or bulk resolution. For instance, we calculate the MLR
scores of several samples from a pancreatic ductal patient-
derived xenograpt model [43]; on average, the samples are
predicted to be hybrid E/M (1.13 ± 0.14). In themodel, con-
straining the tumor EMT score to a fixed value is equiv-
alent to selecting a contour line on the two-dimensional
(k, c) parameter space (Figure 5B, left). Each parameter
combination along the curve corresponds to amodelwhere
the tumor EMT score equals the EMT score for the given
dataset. Models along the contour line exhibit variable
CTC EMT score and CTC cluster fraction, as seen by over-
lapping the contour line onto the CTC score diagram (Fig-
ure 5B, left). Thus, information about tumor EMT score
only is not sufficient to predict neither the EMT scores
of CTCs nor cluster size distribution of CTCs (Figure 5B,
right).
Similarly, the CTC EMT score is not sufficient to fully

constrain the model’s parameters. For example, we find
that the average MLR score of CTCs from a breast can-
cer dataset [30] falls within the hybrid E/M range (1.087
± 0.101). The contour line at constant CTC EMT score,
however, crosses parameter regions with variable tumor

EMT scores (Figure 5C, left). Therefore, for the given CTC
EMT scores, it is possible that the tumor has either a lower
score (i.e. more epithelial) or higher score (i.e. more mes-
enchymal) that the CTCs; moreover, it can have variable
cell fractions too (Figure 5C, right). Moreover, three other
CTC datasets from prostate, myeloma, and breast cancer
[44–46] aremapped onto distinctmodel contour lines (Fig-
ure S7A).
Interestingly, measuring both tumor and CTC MLR

score allows to identify a single (k, c) parameter combi-
nation. To illustrate this scenario, we consider a cohort
of stage II-III breast cancer patients comprising RNA-
sequencing of both primary tumor and CTCs [33]. The
MLRmetric predicts hybrid E/M signature for both tumor
(0.97) andCTCs (1.09). In themodel, fixing both scores cor-
responds to identifying two contour lines (Figure 5D, left);
their intersection provides the (k, c) parameter combina-
tion that better reproduces the dataset. With a unique (k,
c) combination, the model is able to predict a CTC clus-
ter size distribution characterized by almost 60% of CTC
clusters with two or more cells (Figure 5D, right). Unfortu-
nately, the lack of information on the CTC cluster size dis-
tribution for this dataset prevents a comparison between
model and experiment.
Another popular measurement is the overall fraction of

CTC clusters, which can be obtained from blood samples
by separating single CTCs and CTC clusters. Similar to the
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F IGURE 5 The model’s predictive power for several popular measurements of cancer aggressiveness. (A) For single cell measurements
of gene expression (RNA-seq, microarray, etc.), an EMT scoring technique such as MLR is used to provide an input to the model; conversely,
for the case of CTC cluster isolation, the input is the CTC fraction or size distribution. (B) Left: The black line shows the contour line where
the tumor EMT score is fixed and equal to the dataset’s score (the blue shading shows the standard deviation of the measurement). Right: EMT
scores (top) and CTC cluster fractions (bottom) moving along the contour line. (C) Left: The black line shows the contour line where the CTC
EMT score is fixed and equal to the dataset’s score (the blue shading shows the standard deviation of the measurement). Right: EMT scores
(top) and cell fractions (bottom) moving along the contour line. (D) Left: The black lines show the contour line where the tumor and CTC
EMT scores are fixed and equal to the dataset’s scores. Right: Predicted CTC cluster size distribution and cluster fraction for the parameters
identified in the left panel. (E) Left: The black line represents a model’s contour line where the CTC cluster fraction equals the experimental
measurement (the blue shading shows the extremal levels found in the experiment). Right: Models along the contour line exhibit variable
EMT scores of tumor and CTCs (top) as well as variable cell phenotype fractions (bottom). (F) Left: Fitting a CTC cluster size distribution
provides the optimal (k,c) parameter combination. Right: Predicted EMT scores and CTC cluster fraction from the model with optimal (k,c)

cases of tumor and CTC scores, however, a line of constant
CTC fraction can be identified on the (k, c) parameter space
(Figure 5E, left). For instance, CTC clusters isolated from a
cohort of pancreatic cancer patients amount on average to
15% of the total CTCs [47]. Models along this CTC cluster
fraction contour line, however, can exhibit variable tumor
scores in the E, E/M, and M ranges, as well as E/M or M
CTC cluster scores (Figure 5E, right). Similarly, four very
different CTC cluster fraction measurements are mapped
onto different contour lines (Figure S7B) [47–51].
Finally, the model’s best fit for a complete CTC cluster

size distribution can identify a unique parameter combi-
nation (k, c), thus predicting the EMT score of tumor and
CTCs. In this example, a distribution from prostate cancer

[38] is predicted to have a hybrid E/M tumor EMT score
but a mesenchymal CTC EMT score (Figure 5F). Similar to
the case of Figure 5D, where the CTC cluster distribution
was predicted based on EMT scores, the lack of a complete
dataset with knowledge of both EMT scores and cluster
size distribution prevents a quantitative model validation.
Overall, our model is capable of characterizing a tumor

in terms of its EMT-ness and the propensity to undergo
collective cell migration when we are aware of either
both the EMT score of tumor and CTCs or the full CTC
cluster size distribution. Certainly, future experimental
investigations capable to estimate all the three abovemen-
tioned observables will offer a chance to test the model’s
prediction more quantitatively.
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4 DISCUSSION

Phenotypic heterogeneity in EMT is emerging as a hall-
mark ofmetastatic progression, and decoding its dynamics
in a quantitative and predictive manner can lead to funda-
mental insights about metastasis [52]. Subsets of cells with
varying EMT-ness (epithelial, hybrid E/M, and mesenchy-
mal states) have been observed in primary tumors, CTCs,
and metastases [9,11,27].
To quantify EMTphenotypic heterogeneity, we first ana-

lyzed data from multiple tumor and CTC samples with
three different EMT scoring metrics that rely on differ-
ent gene lists and algorithms [13–15]. Tumors and CTCs
exhibited a strong EMT score heterogeneity, suggesting
that there may not exist a specific region of the EMT spec-
trum that is uniquely associated with tumor progression
and CTC migration.
Motivated by the variability across the EMT spectrum

registered in tumor tissues and CTCs, we integrated the
transcriptomic analysis with a mechanism-based biophys-
ical model that couples EMTwith cell migration [34]. This
model predicts a heterogeneous relation between EMT sta-
tus of primary tumor and CTCs; CTCs aremoremesenchy-
mal than the primary tumor in parameter regions where
invasion is mostly carried by individual cells; a transi-
tion tomulticellular, clustered cellmigration, however, can
give rise to CTCs equally or even less mesenchymal than
their corresponding tumor. In other words, measuring the
level of EMT progression in CTCs does not directly allow
to predict the EMT phenotypic distribution of the cor-
responding tumor and vice versa. Specifically, in models
with low EMT rate, CTCs are always more mesenchymal
than primary tumor; conversely, in models with high EMT
rate, CTCs can be either more or less mesenchymal than
primary tumor based on the solitary or collective migra-
tion strategy, respectively. We have previously showed that
high EMT rates describe well the EMT phenotype distribu-
tion of pre-treatment breast cancer patients, whereas lower
EMT rates better describe the same patients after success-
ful treatment [11,34]. Therefore, it is possible that the rela-
tion between EMT score of tumor and CTCs is not just spe-
cific to tumor type, but also evolves during cancer progres-
sion. This interesting prediction could be further explored
with data from both tumor and CTCs at different stages of
clinical treatment.
Nonetheless,we acknowledgemultiple directionswhere

the current model can be further improved. First, EMT
transitions and migration are described with phenomeno-
logical parameters that are not explicitly connected with
signaling and biophysical cellular processes. Developing
models that more explicitly integrate the signaling and
mechanical aspects of EMT and cell migration is a crucial

future challenge, which would make the modeling even
more predictive [53]. Moreover, several assumptions were
made about the dynamics of cancer cell migration in order
to decrease the complexity of themodel. First, it is assumed
that only cells at the periphery of the tumor can undergo
cell migration, even though it is possible for interior cells
to intravasate [54,55]. A more detailed representation of
the tumor structure could more correctly account for EMT
heterogeneity not only at the tumor’s invading edge, but
also in more interion regions. Moreover, additional effects
that could modulate migration and intravasation, such as
cell death and/or breakup of multicellular clusters are not
explicitly considered in the model [56]. Finally, EMP is
not necessarily regulated in a cell-autonomous manner,
but rather depends on communication with other cancer
cells via contact-dependent signaling, such as Notch, or
paracrine signaling, such as TGF-𝛽 [57,58]. In silico mod-
eling of EMT and Notch underlying circuitry dynamics
recently predicted that lateral induction between hybrid
E/M cells can facilitate the formation of hybrid E/Mmulti-
cellular clusters [59,60]. Similarly, reconstruction of TGF-
𝛽 cell-cell communication networks recently suggested
that hybrid E/M phenotypes can act as both senders and
receivers of the signaling, thus facilitating EMT transitions
in other cells [8]. Therefore, modeling the effect of cell-cell
communication on EMplasticity andCTC cluster distribu-
tions could be another interesting future direction.
EMT is connected to multiple axes of cancer progres-

sion, including invasion, stemness, and immune response
[61]. How the heterogeneity along the EMT axis propa-
gates, and in turn depends, on other hallmarks of cancer
progression, remains largely unknown. Future investiga-
tions through high-throughput single cell techniques and
computational modeling will help answer these questions
and identify the defining principles of dynamics of EMP.

5 CONCLUSIONS

As our ability to perform quantitative measurements at
the level of cell migration and single-cell gene expres-
sion during metastasis increases, we need to integrate
these biochemical and biophysical aspects to decipher the
hallmarks of metastasis-initiating cells. While these tech-
niques enable us to inspect EMP at unprecedented reso-
lution, how the EMP traits of tumors propagates to those
of migrating CTCs remains poorly understood. Overall,
our integrated transcriptomic and computational pipeline
highlights that the relationship between "EMT-ness" in pri-
mary tumors and CTCs is likely heterogeneous, underscor-
ing the need for a broader and multi-faceted approach to
characterize tumor aggressiveness in the clinic.
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