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Semicoordinated allelic-bursting shape
dynamic random monoallelic expression
in pregastrulation embryos

Hemant Chandru Naik,1 Kishore Hari,2 Deepshikha Chandel,1 Susmita Mandal,1 Mohit Kumar Jolly,2

and Srimonta Gayen1,3,*

SUMMARY

Recently, allele-specific single-cell RNA-seq analysis has demonstrated wide-
spread dynamic random monoallelic expression of autosomal genes (aRME) in
different cell types. However, the prevalence of dynamic aRME during pregastru-
lation remains unknown. Here, we show that dynamic aRME is widespread in
different lineages of pregastrulation embryos. Additionally, the origin of dynamic
aRME remains elusive. It is believed that independent transcriptional bursting
from each allele leads to dynamic aRME. Here, we show that allelic burst is not
perfectly independent; instead it happens in a semicoordinated fashion. Impor-
tantly, we show that semicoordinated allelic bursting of genes, particularly
with low burst frequency, leads to frequent asynchronous allelic bursting,
thereby contributing to dynamic aRME. Furthermore, we found that coordination
of allelic bursting is lineage specific and genes regulating the development have a
higher degree of coordination. Altogether, our study provides significant insights
into the prevalence and origin of dynamic aRME and their developmental rele-
vance during early development.

INTRODUCTION

In a diploid eukaryotic cell, both parental alleles of a gene are usually expressed. However, monoallelic

expression of genes is common in phenomena such as genomic imprinting or X chromosome inactivation,

where a single allele of a gene is expressed (Bartolomei and Ferguson-Smith, 2011; Gayen et al, 2015, 2016;

Harris et al., 2019; Lyon, 1961; Mandal et al., 2020; Saiba et al., 2018; Sarkar et al., 2015). Surprisingly, recent

advances on allele-specific single-cell RNA-seq (scRNA-seq) have revealed that many autosomal genes ex-

press monoallelically, which is transient in nature (Deng et al., 2014; Gendrel et al., 2016; Gregg, 2017; Re-

inius et al., 2016; Reinius and Sandberg, 2015; RV et al., 2021). This widespread temporal aRME has been

termed as dynamic random monoallelic expression of autosomal genes (aRME). The pioneering study of

Deng et al. showed that �12–24% of autosomal genes in a mouse blastomere undergo dynamic random

monoallelic expression (RME) (Deng et al., 2014). In the same study, analysis of hepatocytes from adult

mice and mouse fibroblast cell lines also showed a similar pervasiveness of dynamic aRME (Deng et al.,

2014). Subsequently, prevalent dynamic aRME has been reported in various cell types of mice and humans

(Borel et al., 2015; Reinius et al., 2016). However, the prevalence of dynamic aRME during pregastrulation

development is not known yet. Here, we have profiled the genome-wide pattern of dynamic aRME in

different lineages of pregastrulation mouse embryos. It is believed that dynamic aRME creates temporal

variation among the cells and therefore can contribute to the cell fate decision and promote cellular plas-

ticity during development. Therefore, profiling the pattern of dynamic aRME during early development is of

immense interest.

On the other hand, the origin of dynamic aRME remains poorly understood. It is thought that dynamic

aRME is a consequence of stochastic transcriptional burst (Eckersley-Maslin and Spector, 2014; Reinius

and Sandberg, 2015). It is known that transcription happens through discrete bursts such that the state

of a gene keeps switching randomly from an active to an inactive state, which leads to discontinuous pro-

duction of mRNA (Raj et al., 2006; Raj and van Oudenaarden, 2008; Suter et al., 2011; Tunnacliffe and

Chubb, 2020). The sporadic nature of transcriptional bursting is proposed to be a major driver of sponta-

neous heterogeneity in gene expression, which in turn drives diversity of cell behavior in differentiation and
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disease. In general, burst kinetics are characterized through the simple two-state model of transcription

(Larson, 2011; Peccoud and Ycart, 1995). This model assumes that promoter activity can switch stochasti-

cally from transcriptional ‘‘on’’ to ‘‘off’’ state, with transcripts being produced only in the ‘‘on’’ state.

Moreover, the transition between on and off state and the rate of transcription are determined by a single

rate-limiting step and often the RNA decay rate is used to normalize these kinetic parameters. Further-

more, kinetics is mainly estimated by the burst size and burst frequency. The burst size is described as

the average number of synthesized mRNA while a gene remains in an active state, whereas burst frequency

is the rate at which bursts occur per unit time. For a long time, the analysis of transcriptional burst kinetics,

including burst size and frequency, was mainly relied on single-molecule RNA-fluroscence in situ hybridi-

zation or live-cell imaging and therefore restricted to a few selected loci of the genome (Raj et al., 2006).

Recent advancements in allele-specific expression analysis of many genes at a single cell level have

made it possible to analyze transcriptional burst kinetics at the allelic level genome wide more extensively

(Ochiai et al., 2020; Sun and Zhang, 2020). However, the kinetics of bursting at the allelic level remains

poorly understood. Investigation of burst kinetics at the allelic level is important to understand the periodic

fluctuation of the abundance of transcripts from each allele and how it can contribute to cellular and pheno-

typic variability. To explore this, we have profiled genome-wide allele-specific transcriptional burst kinetics

in different lineages of pregastrulation mouse embryos through allele-specific scRNA-seq. Moreover, we

have extended our analysis to explore the biological relevance of the allelic burst kinetics. Finally, we

have investigated the association between allelic bursting and dynamic aRME.

RESULTS

Dynamic aRME in different lineages of pregastrulation mouse embryos

To investigate the aRME pattern in different lineages of pregastrulation mouse embryos, we performed

allele-specific gene expression analysis using the available scRNA-seq data set of E5.5, E6.25, and E6.5

hybrid mouse embryos (Cheng et al., 2019) (Figure 1A). These embryos are derived from two divergent

mouse strains (C57Bl/6J and CAST/EiJ). Therefore, they harbor polymorphic sites between the alleles,

which allowed us to perform allelic expression profiles of the genes (Figure 1A). We segregated the cells

into the three lineages: epiblast (EPI), extraembryonic ectoderm (ExE), and visceral endoderm (VE) based

on t-distributed stochastic neighbor embedding (t-SNE) analysis and lineage-specific marker gene expres-

sion (Figure S1).

First, we quantified the autosomal gene’s allelic expression pattern in an individual cell of different lin-

eages. Considering the technical noise such as allelic dropout can lead to a false estimation of monoal-

lelic expression, especially for lowly expressed genes, we removed those genes from our analysis. We

considered only those genes, which had at least mean ten reads per cell for each lineage of a specific

developmental stage. We considered a gene as monoallelic if at least 95% of the allelic reads was orig-

inated from only one allele. We found that an average of �15–20% of genes showed monoallelic expres-

sion either from CAST or C57 allele per cell, and the pattern was almost similar across the three lineages

EPI, ExE, and VE of different developmental stages (Figure 1B). Moreover, each embryo’s allelic expres-

sion of different developmental stages showed a very similar pattern (Figure 1C). Interestingly, per-em-

bryo estimation of the mean percent of genes with monoallelic expression by pooling an individual

embryo’s cells resulted in significant reduction in the fraction of genes with monoallelic expression

(0.8–2% genes per embryo) (Figure 1D). Based on this, we assumed that the allelic expression pattern

of the individual gene might vary from cell to cell in each embryo’s lineage at a particular stage. To

test our assumption, we investigated the status of the allelic pattern of individual genes across the cells

of each lineage of each developmental stage. Indeed, we found a considerable variation of the gene’s

allelic status across the cells, indicating the presence of cell-to-cell dynamic aRME (Figure 2). We

Figure 1. Genome-wide profiling of aRME in different lineages of pregastrulation embryos

(A) Graphical outline of the workflow: allelic gene expression and burst kinetics analysis in different lineages (EPI, ExE, and VE) of pregastrulation hybrid

mouse embryos (E5.5, E6.25, and E6.50) at the single-cell level using published scRNA-seq data set. Hybrid mouse embryos were obtained from crossing

between two divergent mouse strains C57 and CAST.

(B) Estimation of the mean percent of autosomal genes showing monoallelic expression per cell of each lineage (EPI, ExE, and VE) at different stages (E5.5,

E6.25, and E6.5).

(C) Estimating the mean percent of autosomal genes showing monoallelic expression per cell of each lineage of embryos at different stages.

(D) Estimating the mean percent of autosomal genes exhibiting monoallelic expression per embryo of each lineage at different stages. For this analysis, for

each lineage, we considered embryos which had at least 10 cells for that lineage.
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observed four different patterns of allelic expression; Cat1: nonrandom monoallelic (1–2%), Cat 2:

random monoallelic with one allele (4–39%), Cat 3: random monoallelic with either allele (30–81%),

and Cat 4: biallelic (10–29%) (Figure 2). Altogether, our analysis revealed a high degree of cell-to-cell dy-

namic aRME (category 2: 4–39% and category 3: 30–81%) in each lineage of pregastrulation embryos,

indicating dynamic allelic expression is a general feature of gene expression affecting many genes dur-

ing development. We validated our allelic expression analysis through profiling the allelic expression of

X-linked genes (Figure S2).

Figure 2. Dynamic aRME in different lineages of pregastrulation embryos

Quantification of the percent of genes showing the different category of allelic expression (Cat1: nonrandommonoallelic,

Cat 2: random monoallelic with one allele, Cat 3: random monoallelic with either allele, Cat 4: biallelic) in three different

lineages EPI, ExE, and VE across the various developmental stages.
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Allelic bursting is semicoordinated

Next, we explored genome-wide allele-specific transcriptional burst kinetics to investigate the link be-

tween dynamic aRME and transcriptional bursting. Based on two-state transcription models, transcription

occurs in bursts where the state of a gene keeps switching from ON to OFF state (Figure 3A). Burst kinetics

is mainly characterized by burst frequency and burst size. The burst frequency is the rate at which bursts

occur per unit time, and burst size is determined by the average number of synthesized mRNA while a

gene remains in an active state (Figure 3A). We used single-cell allelic expression (SCALE) to determine

the genome-wide burst kinetics of autosomal genes in an allele-specific manner (Jiang et al., 2017). Prin-

cipally, based on the Empirical Bayes framework, SCALE first categorizes the genes to biallelic, monoal-

lelic, and silent using the allele-specific read counts, and then biallelic genes are further classified as bial-

lelic bursty and biallelic nonbursty. Finally, different burst kinetics parameters are deduced for the biallelic

bursty genes. We performed burst kinetics analysis for only E6.5 in EPI (n = 123 cells) and VE (n = 115 cells)

cells. For other stages or lineages, there were not a sufficient number of cells for performing SCALE anal-

ysis. We considered those autosomal genes (n = 5633 genes for EPI and n = 5791 genes for VE) for SCALE

analysis, which had at least mean ten reads per cell in each lineage. In both E6.5 EPI and VE, we found that

most of the genes (70–82%) showed bursty expression (Figure 3B; Table S1). Next, we compared the burst

kinetics between the alleles of biallelic bursty genes. Interestingly, we found that the alleles of most of the

genes showed similar burst kinetics, i.e., they had identical burst frequency and size (Figures 3C and 3D).

Only 48 out of 3861 bursty genes (EPI) and 90 out of 4705 bursty genes (VE) showed significantly different

allelic burst frequency after false discovery rate correction (Figure 3C). On the other hand, very few genes

showed significantly different allelic burst size (Figure 3D). Next, we determined the independence of

allelic transcriptional burst. We plotted the percent of cells expressing neither allele (p0) with the percent

of cells expressing both alleles (p2), as depicted in Figure 3E. In the perfect independent model, most of the

genes (black dots) should lie across the red curve, whereas perfect coordination model genes should lie

near the diagonal blue line. Interestingly, we found that most of the genes reside in the middle of between

the red and diagonal blue lines, indicating that allelic bursting is neither entirely independent nor perfectly

coordinated (Figure 3E). Additionally, the null hypothesis of independence was rejected for most of the

genes (Table S1). Altogether these results suggested that alleles of most of the genes have similar burst

kinetics; however, allelic bursting was neither entirely independent nor perfectly coordinated.

Next, to get a quantitative assessment of the dependence between the alleles, we constructed a simple

two-component stochastic model, inspired from the classic two-state model of transcription (Peccoud

and Ycart, 1995) (Figure S4). This model describes two allele’s identical kinetic parameters in terms of their

rates to switch ‘‘on’’ and ‘‘off.’’ In addition, two parameters stayOn and stayOff have been included that add

to ‘‘on’’ and ‘‘off’’ such that an allele that is on would have increased rate (on + stayOn) of remaining on and

vice versa, thus leading to bursty transcription. To model the dependency of the transcription of one allele

on the other, we assumed that the probability of an allele turning and staying on is multiplied by a param-

eter lambda, when the other allele is on. Therefore, lambda >1 describes that an allele in ‘‘on’’ state facil-

itates the other allele also being ‘‘on’’ (the higher the value of lambda, the higher the effect), lambda = 1

describes independent bursting of the two alleles, and lambda <1 describes that an allele being ‘on’ dis-

favors the other allele staying ‘‘on.’’ In total, for both alleles, we have five parameters in the model. The on

and off probabilities are chosen between 0 and 1, and lambda values are chosen between 0.01 and 100. The

parameters are converted to probabilities for simulation, and thus, the relative levels of parameters instead

of absolute values are more important. To obtain different possible model behaviors, we sampled 35,000

parameter sets chosen uniformly randomly from the aforementioned range. The algorithm used for

Figure 3. Genome-wide profiling of transcriptional burst kinetics

(A) Representation of the two-state model of transcription. kon: the rate at which a gene becomes transcriptionally active (from off to on); koff: the rate at which

a gene becomes inactive (from on to off); S is the rate of transcription, while the gene is active; d is the rate of mRNA decay. Burst kinetics is characterized

through burst frequency (kon) and the burst size (S/koff)..

(B) Estimating the proportion of autosomal genes with bursty expression in EPI and VE cells of the E6.5 stage.

(C) The burst frequency of the two alleles of most of the genes was highly similar in EPI and VE cells of the E6.5 stage (r = 0.80 and 0.82, respectively). Genes

having significantly different allelic burst frequency are marked as a red triangle.

(D) A similar burst size of the two alleles of most of the genes in EPI and VE cells of the E6.5 stage (r = 0.51 and 0.59, respectively). Genes having significantly

different allelic burst sizes are marked as a red triangle.

(E) Smooth scatterplot showing independence of allelic transcriptional bursting in EPI and VE cells of E6.5 stage. p0 is the percent of cells expressing neither

allele. p2 is the percent of cells expressing both alleles. Black points represent individual genes. The diagonal blue line (p0 + p2 = 1) represents coordinated

bursting, whereas the red curve represents perfect independent bursting with shared kinetics.
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simulations is given in Figure S4. For each parameter set sampled, we simulate for 10,000 time steps and

record the state of the allele at the end. This step is repeated 100 times to calculate the probability of the

alleles being on.

First, we validated our model through simulations for independently expressing alleles by testing it against

the theoretical relationship between probability of both alleles being off (p0) and both alleles being on (p2).

Given the alleles both have the same on probability (p), p0 is given as (1-p)*(1-p) and p2 is given as p*p.

Therefore, p2 and p0 are related via the following equation:

ffiffiffiffiffiffi
p2

p
+

ffiffiffiffiffiffi
p0

p
= 1

We found that the values obtained via numerical simulations (Figure 4A) lie very close to this curve and

distributed symmetrically along the curve (Figure 4A inset), thus validating the model. Next, to understand

how various parameters affect the placement of genes in the p0-p2 plot, we divided the data obtained from

simulations into four regions (Figure 4B). The yellow region represents points below the independence

curve, orange dots are those lying on the absolute dependence curve, black dots denote the region be-

tween the two curves, and red dots are for the region with high p0. Among the four, the experimental

data points align best with the black region in the plot. To understand these regions better, we generated

the distribution of model parameters corresponding to these regions (Figures 4C and S3).

First, we looked at the region with high p0. The distribution of parameters revealed that these points had

very low ‘‘on’’ probability and high values of lambda (Figure 4C). A scatterplot between these two param-

eters further shows that for high values of lambda, the probability to switch to an ‘‘on’’ state must be very

small (Figure 4C inset). In the experimental data, none of the points lie in this region, possibly because of

the elimination of very low expressed dropout prone genes with ‘‘on’’ probabilities lower than 0.1. To test

this hypothesis, we included low expressed dropout prone genes in the p0-p2 plot (Figure 4D) and

observed the region with high p0 populated, thereby validating that high p0 region of the graph corre-

sponds to dropout-prone alleles.

We next wanted to understand which parameters contribute most to the regional separation on the p0-p2

plot. To do so, we performed principal component analysis (PCA) on the parameter sets corresponding to

each region. For all regions, the first PCA component (PC1) explained >90% variance, and major contrib-

utor to PC1 is the dependence parameter lambda (Figure 4E). Looking at the range of lambdas for each

region of the p0-p2 plot, we found that the region between the two theoretical curves (complete

dependence, complete independence) corresponds to moderate values of lambda (between 10 and 50).

Simulating parameter sets in this range of lambda values gave us a close similarity (Figure 4F) to the exper-

imental plots (Figure 3E). Together, this quantitative analysis highlights the mechanistic underpinnings un-

derlying observed experimental data, endorsing a semicoordinated allelic bursting for most genes.

Dynamic aRME is linked to allele-specific transcriptional burst kinetics

Next, we delineated the correlation between allelic transcriptional burst kinetics and dynamic aRME. First,

we wanted to see if there is any correlation between bursty gene expression and dynamic aRME. Interest-

ingly, we found that most dynamic aRME genes (Cat 2 and Cat 3) showed bursty expression (Figure 5A).

Especially for Cat 3 aRME genes, more than 92% of genes showed bursty expression (Figure 5A). On the

other hand, most biallelic genes (Cat 4) for EPI cells showed nonbursty expression (Figure 5A). Altogether,

these results suggested that dynamic aRME is generally linked with bursty expression. Next, we examined if

there is any correlation between the allelic expressions of genes with the allelic burst kinetics. To test this,

we performed a pairwise correlation test between different burst kinetics parameters and the sum of allelic

read counts for each gene across the cells (Figure 5B). We found that the total expression of alleles is posi-

tively correlated (r = 0.65–0.77) with allelic burst frequency. On the other hand, although allelic expression

was positively correlated with the burst size (r = 0.12–0.18) and the proportion of unit time the allele remains

active (r = 0.23–0.34), the correlation value was much lower than the burst frequency. To get more insights

into this aspect, we compared the burst frequency and burst size of alleles with the percent of cells express-

ing that corresponding allele (Figure 5C) or the mean expression of alleles (Figure 5D). Interestingly, we

found that the proportion of cells express one allele of genes/mean expression of alleles is substantially

dependent on the burst frequency of that allele rather than burst size (Figures 5C and 5D). Overall, allelic

expression was directly proportional to the allelic burst frequency such that alleles expressing high showed

high allelic burst frequency and those expressing low had low allelic burst frequency. Altogether, these
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Figure 4. Simulation of the dependence between allelic bursting

(A) Comparison of simulation results for independent allele bursting with theoretical curve representing independent

bursting on the p0-p2 plot. A distribution of distance of the points from the curve is shown in the inset.

(B) Classification of simulation data based on their position in the p0-p2 plot with respect to the theoretical curves.

(C) Parameter distribution for the genes represented with maroon dots (p0>0.7) in (B). Inset shows a scatterplot between

lambda and on probability.

(D) Smooth scatterplot of independence of allelic transcriptional bursting in EPI and VE cells of E6.5 stage including

dropout-prone genes.

(E) PCA1 components of the parameter regimes labeled in (B).

(F) Scatterplot between p0 and p2 constructed by using two constraints on the parameter values: on > 0.1 and 10 <

lambda<50.
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analyses suggested that burst frequency among the different kinetics parameters is crucial for monoallelic

gene expression. Next, we delineated if dynamic aRME is dependent on the overall expression level. Inter-

estingly, comparison of expression levels between bursty vs. nonbursty genes revealed that nonbursty

genes always have significantly higher expression than the bursty genes (Figure 6A). Next, we hypothesized

that the proportion of cells with the monoallelic expression might depend on the gene’s expression level.

We analyzed the correlation between gene expression level and percent of cells showing the monoallelic

expression for that gene to test our hypothesis. As expected, we found a high negative correlation (r =

�0.58 to �0.61) (Figure 6B). Altogether, these results indicated that the extent of a gene’s monoallelic

expression depends on its expression level and allelic burst frequency. Based on our observation and anal-

ysis, we proposed a model highlighting how transcriptional burst kinetics can contribute to the dynamic

aRME (Figure 6C). We propose that bursty genes with asynchronous allelic burst kinetics build up the dy-

namic aRME landscape. Genes with lower expression and/or lower burst frequency frequently undergo

monoallelic expression (Figure 6C). On the other hand, genes with high expression and/or high allelic burst

frequency express most of the time biallelically (Figure 6C).

Relevance of allelic burst kinetics to development

Next, we extended our analysis to explore the biological perspectives of allelic transcriptional burst

kinetics. Since it is believed that stochastic allelic bursting/dynamic aRME provides developmental plas-

ticity, we investigated the correlation between the degree of coordination of allelic bursting and develop-

ment. To test this, we categorized genes into four different major classes based on their allelic coordina-

tion: highly coordinated, semicoordinated, independent, and genes with low p0 and high p2 (Figure 7A).

Next, we performed gene ontology (GO) biological process analysis of these different categories of genes

in EPI and VE cells of E6.5 (Table S2). Interestingly, we found that in EPI E6.5 cells, the highly coordinated

genes showed significant enrichment to different developmental processes, including gastrulation, meso-

derm development, and embryonic development (Figures 7B, Table S3). We did not find any such devel-

opment-related enrichment in case of independent genes. Additionally, genes with low p0 and high p2 did

not show enrichment for developmental genes (Figure 7A). However, in the case of VE cells, we did not find

significant enrichment of the developmental genes in neither highly coordinated nor independent classes,

suggesting that they are primarily in a semicoordinated state. Altogether, this analysis indicated that many

genes regulating the development have higher degree of coordination of allelic bursting. Next, we per-

formed a cross-comparison of allelic coordination of the genes between EPI and VE cells. To do this, we

selected the common genes between VE and EPI cells from the SCALE output (Figure 7C). We found

that while majority of genes was intersected between EPI and VE cells, many genes were not (Figure 7C).

Certainly, many genes related to each cell state are excluded from this intersection because they are only

expressed in one lineage and therefore did not pass the quality control in SCALE analysis in other lineage

specially owing to their low expression. Next, we categorized those common/intersecting genes into four

different major classes based on allelic coordination: highly coordinated, semicoordinated, independent,

and genes with low p0 and high p2 (Figure 7D). Cross-comparison of these four classes of genes between

EPI and VE cells showed the degree of coordination of allelic bursting changes between these two lineages

for many genes, emphasizing the biological significance of allelic burst kinetics (Figure 7E). Interestingly,

GO biological process analysis of unique genes of each category related to EPI and VE revealed a distinct

pattern of biological functions (Table S4).

DISCUSSION

It is believed that dynamic aRME creates temporal variation among the cells and thereby can contribute to

the cell fate decision and promote cellular plasticity during development (Gregg, 2017; Huang et al., 2018;

Figure 5. Association between burst kinetics and dynamic aRME

(A) Quantification of the proportion of dynamic aRME genes (Cat 2 & Cat 3) with bursty expression and proportion of biallelic genes (Cat 4) having bursty

expression in EPI and VE cells of E6.5 stage.

(B) Pairwise correlation between different allelic bursting kinetics parameters (burst frequency: kon
CAST and kon

C57; Proportion of unit time that the gene stays

in active form: pCAST = kon
CAST/(kon

CAST + koff
CAST) ; pC57 = kon

C57/(kon
C57 + koff

57); burst size: SCAST/koff
CAST and SC57/koff

C57) and expression level (sum of

normalized allelic read counts (log)) of the alleles in EPI and VE cells of E6.5 stage.

(C) Scatterplot representing an estimate of burst size and a burst frequency of the CAST and C57 allele of autosomal genes. The gene’s color is profiled

based on the percent of cells expressing the CAST or C57 allele.

(D) Scatterplot representing an estimate of burst size and burst frequency of the CAST and C57 allele of autosomal genes. The color of the gene is depicted

based on the mean allelic expression.
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Montag et al., 2018; Ng et al., 2018). Therefore, investigating dynamic aRME during early development is

crucial. In the present study, we show widespread dynamic aRME in different lineages of pregastrulation

mouse embryos. Notably, dynamic aRME is more prevalent (�69–88% genes) in pregastrulation embryos

than in the blastomeres (�12–24%) reported by Deng et al. (Deng et al., 2014) (Figure 2). This robust in-

crease in the fraction of dynamic aRME in pregastrulation embryos indicates that dynamic allelic expression

is a general feature of gene expression affecting many genes during development. However, our analyses

have one caveat that is worth discussing. Our estimation of dynamic aRME might be erroneous to some

extent owing to the allelic dropout effect of scRNA-seq. Although we believe that through eliminating
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Figure 6. Relation of bursting and dynamic aRME with the gene expression level

(A) Comparison of the expression level of bursty vs. nonbursty genes in EPI and VE cells of the E6.5 stage. ***p value

<0.001 (Mann–Whitney two-sided U test).

(B) Correlation plot between the mean expression of gene and percent of cells showing monoallelic expression for that

gene (r = �0.58 in EPI and �0.61 in VE).

(C) Model representing how transcriptional burst kinetics can lead to dynamic aRME.
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the low expressed genes and Spike-in normalization of allelic read counts, we have significantly reduced

the chances of false estimation of aRME owing to the allelic dropout. Indeed, previous reports have shown

that low expressed genes are highly prone to undergo allelic dropout (Kim et al., 2015; Santoni et al., 2017;

Wainer-Katsir and Linial, 2020; Zhao et al., 2017). Nevertheless, we believe that using a split-cell strategy as

used in blastomere analysis by Deng et al., (2014) would have reduced the allelic dropout level more pre-

cisely. In split-cell experiments, RNA lysate from individual cells is split into two equal volume and then pro-

cessed for sequencing. Using the allelic call from the split pair, stochastic dropout can be estimated and

thereby false positive in monoallelic expression estimation can be eliminated. However, we could not

perform this experiment as the scRNA-seq data set used for this study lacked split-cell experiment data.

Separately, among these aRME genes, some gene’s allelic expression pattern might be mitotically herita-

ble, as reported earlier (Eckersley-Maslin et al., 2014; Gendrel et al., 2014; Gimelbrant et al., 2007; Jeffries

et al., 2016; Zwemer et al., 2012). In the future, investigation on the clonal cell population can disentangle

the mitotically stable aRME from the dynamic aRME.

On the other hand, we have profiled genome-wide allele-specific burst kinetics of autosomal genes to un-

derstand the implication of allelic bursting on the dynamic aRME. We found that majority of the autosomal

genes have bursty expression, and alleles of most of the genes have similar burst kinetics, which is consis-

tent with previous reports in other cell types (Figures 3B, 3C, and 3D) (Jiang et al., 2017). However, we found

that allelic bursting is not perfectly independent; instead, it happens in a semicoordinated fashion (Figures

3E and 4). Finally, we demonstrate that dynamic aRME is linked to semicoordinated allelic bursting. We

show that majority of dynamic aRME genes have bursty expression, whereas most of the biallelic genes

were found to be nonbursty. Moreover, we found that the extent of dynamic aRME is determined by burst

frequency rather than burst size or how long an allele remains active. Notably, we found that dynamic aRME

was highly dependent on the overall expression level of a gene. Altogether, we propose that semicoordi-

nated allelic bursting for the genes with lower burst frequency leads to frequent asynchronous allelic

bursting, thereby creating widespread dynamic aRME (Figure 6C). On the other hand, nonbursty genes

or bursty genes with high allelic burst frequency and/or high expression levels exhibit frequent biallelic

expression (Figure 6C).

Interestingly, our analysis revealed that the degree of coordination of allelic bursting for many genes varied

between developmental lineages EPI and VE (Figures 7D and 7E). Moreover, we found that unique genes of

each coordination category between VE and EPI have distinct biological functions. Importantly, we found

that genes involved in development have a higher degree of coordination of allelic bursting in EPI E6.5 cells

(Figure 7B). Notably, we found key genes including Brachyury T, Eomes, Pou5f1, Fgfr1, etc. involved in

gastrulation/germ layer formation showed higher coordination (Table S3). Beyond plasticity, the high de-

gree of allelic coordination of developmental genes in EPI E6.5 could also reflect latent/structural hetero-

geneity within the epiblast at the onset of gastrulation as the initial germ layers begin to be specified.

Therefore, in the future, it will be worth to investigate further the potential link between high coordination

and lineage commitment during pregastrulation. Altogether, these results indicate the biological signifi-

cance of allelic burst kinetics and related dynamic aRME. In the future, more extensive investigations are

necessary to understand further the biological implications of allelic bursting/dynamic aRME in a wide

range of biological processes and diseases.

Together, our study shed light on the kinetics of transcriptional bursting at allelic level and the biological

relevance of it. In the future, extensive studies are necessary to understand the regulatory network behind

semicoordinated allelic bursting. In a perfect independent model, regulation of allelic expression should

be autonomous, whereas, in an alternative model of perfect dependence, there can be shared allelic

Figure 7. Genes with higher allelic bursting coordination enriched for gene sets with developmental functions

(A) Scatterplot representing different categories of the genes based on allelic transcriptional bursting in EPI and VE cells of E6.5: low p0 high p2 (green

asterisk), highly coordinated (genes with p0+p2 R 0.90: slate gray square within blue dotted lines), independent (genes near the red curve line; with a

threshold G0.05 [upper and lower red curve line] from the main red curve lines: rosewood triangle), and semicoordinated (Persian green dots).

(B) Gene ontology biological process representing enrichment of highly coordinated genes (EPI, E6.5) in different developmental processes.

(C) Venn diagram representing the common genes between EPI E6.5 and VE E6.5 cells.

(D) Scatterplot representing different categories of the genes (low p0 high p2, highly coordinated, independent, and semicoordinated) based on allelic

transcriptional bursting in EPI and VE cells of E6.5.

(E) Cross-comparison of the degree of coordination between EPI E6.5 and VE E6.5 cells based on different categories (genes with low p0 high p2, highly

coordinated, independent, and semicoordinated) of allelic burst kinetics.
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expression regulation. We believe that autonomous as well as shared regulation of the alleles result in

semicoordinated transcriptional bursting. Interestingly, a recent study has shown that chromatin conforma-

tions are variable between alleles, and each allele can behave independently, indicating that regulation of

allelic expression can be self-governing (Finn et al., 2019). Moreover, it has been shown that while allelic

burst frequency is regulated through an enhancer, burst size is controlled by the core promoter (Larsson

et al., 2019). Moreover, a recent report suggests stochastic switching between methylated and unmethy-

lated states at many regulatory loci occurs in a sequence-dependent manner, which can be another mech-

anism behind stochastic allelic transcriptional bursting (Onuchic et al., 2018).

Limitation of the study

In this study, we have provided significant insights into the prevalence and origin of dynamic aRME and

their developmental relevance during early mammalian development. One potential caveat of our study

is that our estimation of dynamic aRME might be erroneous to some extent owing to the allelic dropout

effect of scRNA-seq. Although we believe that through eliminating the low expressed genes in our analysis,

we have significantly reduced the chances of false estimation of aRME owing to the allelic dropout.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information on resources and reagents should be directed to lead contact, Srimonta Gayen

(srimonta@iisc.ac.in)

Materials availability

This study did not generate new unique reagents.

Data and code availability

This study did not generate any unique datasets. The code used for simulation is available at https://github.

com/csbBSSE/aRME. For questions regarding the raw data from the current study, please contact the lead

contact. All software’s used in this study are commercially available.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

No experimental model system used for this study.

METHOD DETAILS

Data acquisition

Single-cell transcriptome datasets used for this study were acquired fromGene ExpressionOmnibus (GEO)

under the accession number ‘‘GEO:GSE109071’’ (Cheng et al., 2019). For our research, we analyzed a sin-

gle-cell dataset generated from E5.5, E6.25, and E6.50 hybrid mouse embryos (C57BL/6J 3 CAST/EiJ).

E5.5 and E6.25 embryos were derived from the following cross: C57(F) 3 CAST(M), whereas E6.5 were

derived from CAST(F) 3 C57(M).

Lineage identification

All the single cells (510 cells) of different stages were subjected to a dimension reduction algorithm using

t-distributed stochastic neighbor embedding (t-SNE) to identify lineages. Three thousand most variable

genes were used for the analysis. t-SNE was performed using Seurat (version 3.1.5) (Butler et al., 2018; Stu-

art et al., 2019). The allocation of each cluster to cell lineages to EPI, ExE, and VE lineages was based on the

expression of bona fide marker genes: Oct4 for EPI, Bmp4 for ExE, and Amn for VE.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Seurat (version 3.1.5) (Butler et al., 2018; Stuart et al., 2019) https://satijalab.org/seurat/

VCF tools (Danecek et al., 2011) https://github.com/vcftools/vcftools

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

SCALE (Jiang et al., 2017) https://github.com/yuchaojiang/SCALE

Julia 1.5.1. (Bezanson et al., 2017) https://epubs.siam.org/doi/pdf/10.1137/141000671

gProfiler (Raudvere et al., 2019) https://biit.cs.ut.ee/gprofiler_archive3/e102_eg49_p15/gost

ggplot2 (Wickham, 2016) https://ggplot2.tidyverse.org/

R R core team https://www.R-project.org/

Samtools (Li et al., 2009) http://www.htslib.org/

BEDTools (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2

Code for simulation This paper https://github.com/csbBSSE/aRME
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Allele-specific expression and burst kinetics analysis

For allelic expression analysis of genes, first, we constructed in silico CAST specific parental genome by

incorporating CAST/EiJ specific SNPs into the GRCm38 (mm10) reference genome using VCF tools (Dane-

cek et al., 2011). CAST specific SNPs were obtained from theMouse Genomes Project (https://www.sanger.

ac.uk/science/data/mouse-genomes-project). Reads were mapped onto both C57BL/6J (mm10) reference

genome and CAST/EiJ in silico parental genome using STAR with no multi-mapped reads. To exclude any

false positive, we only considered those genes with at least 1 informative SNPs (at least 3 reads per SNP

site). In genes having more than 1 SNP, we took an average of SNP-wise reads to have the allelic read

counts. We normalized allelic read counts using Spike-in control as described in Sun et al. 2020 (Sun and

Zhang, 2020). First, we calculated the sum of readsmapping to all Spike-in molecule in each cell of 510 cells.

Next, we divided each cell’s Spike-in reads with the highest Spike in value from the array of 510 cells to

obtain the normalization factor for each cell that are all between 0 and 1. Finally, we normalized the allelic

read counts in each cell by dividing the original read count by the corresponding normalization factor. We

considered those genes which had at least mean 10 reads per cell for each lineage of a specific develop-

mental stage. Allelic expression was calculated individually for each gene using formula = (Maternal/

Paternal reads) O (Maternal reads + Paternal reads). A gene was considered monoallelic if at least 95%

of the allelic reads came from only one allele. We performed genome-wide allele-specific burst kinetics

analysis using SCALE (Jiang et al., 2017).

In silico model

The model was simulated using Julia 1.5.1(Bezanson et al., 2017). The code is available at https://github.

com/csbBSSE/aRME. The plots were made using the ggplot2 package from R 4.0. PCA of the parameter

sets was done using prcomp function from R 4.0.

Gene ontology

Gene ontology analysis was performed using g:GOSt from gProfiler (https://biit.cs.ut.ee/gprofiler_

archive3/e102_eg49_p15/gost) with g:SCS multiple testing correction method and selected the functional

terms which are passing FDR < 0.05 from GO:BP (Raudvere et al., 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed usin the R software (https://www.R-project.org/). Mann–Whitney two-

sided U test was used for statistical significance analysis and p values < 0.05 was considered as significant.

For correlation analysis, Pearson test was used.
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